Discuss the need and sources of finance to a business entity.

Discuss the meaning of cost of capital for raising capital from different sources of finance.

Measure cost of individual components of capital.

Calculate weighted cost of capital and marginal cost of capital, Effective Interest rate.

Cost of Debt
Cost of Preference Share
Cost of Equity
Cost of Retained Earning
Combination of Cost and Weight of each sources of Capital
Weighted Average Cost of Capital (WACC)
4.1 INTRODUCTION

The cost of capital i.e. cost of having capital for long period from different sources of finance. Generally the sources of finance for non corporate entity could be either internal (savings, investments in current and non-current assets etc.) or external borrowings (loan from financial institutions, local borrowings etc.).

4.2 MEANING OF COST OF CAPITAL

Cost of capital is the return expected by the providers of capital (i.e. shareholders, lenders and the debt-holders) to the business as a compensation for their contribution to the total capital. When an entity (corporate or others) procured finances from either sources as listed above, it has to pay some additional amount of money besides the principal amount. The additional money paid to these financiers may be either one off payment or regular payment at specified intervals. This additional money paid is said to be the cost of using the capital and it is called the cost of capital. This cost of capital expressed in rate is used to discount/compound the cashflow or stream of cashflows. Cost of capital is also known as ‘cut-off’ rate, ‘hurdle rate’, ‘minimum rate of return’ etc. It is used as a benchmark for:

• Framing debt policy of a firm.
• Educating Capital budgeting decisions.

4.3 SIGNIFICANCE OF THE COST OF CAPITAL

The cost of capital is important to arrive at correct amount and helps the management or an investor to take an appropriate decision. The correct cost of capital helps in the following decision making:

(i) Evaluation of investment options: The estimated benefits (future cashflows) from available investment opportunities (business or project) are converted into the present value of benefits by discounting them with the relevant cost of capital. Here it is pertinent to mention that every investment option may have different cost of capital hence it is very important to use the cost of capital which is relevant to the options available. Here Internal Rate of Return (IRR) is treated as cost of capital for evaluation of two options (projects).

(ii) Performance Appraisal: Cost of capital is used to appraise the performance of a particulars project or business. The performance of a project or business in compared against the cost of capital which is known here as cut-off rate or hurdle rate.

(iii) Designing of optimum credit policy: While appraising the credit period to be allowed to the customers, the cost of allowing credit period is compared...
against the benefit/ profit earned by providing credit to customer of segment of customers. Here cost of capital is used to arrive at the present value of cost and benefits received.

4.4 DETERMINATION OF THE COST OF CAPITAL

The cost of capital can either be explicit or implicit. The cash outflow of an entity towards the utilization of capital which is clear and obvious is termed as explicit cost of capital. These outflows may be interest payment to debenture holders, repayment of principal amount to financial institution or payment of dividend to shareholders etc. On the other hand Implicit cost is the cost which is actually not a cash outflow but it is an opportunity loss of foregoing a better investment opportunity by choosing an alternative option. An entrepreneur for example, uses its bank deposits which earns interest @ of 9% p.a. for the business purpose. Using its bank deposits for business purpose means forgoing interest earnings from the bank on this deposit. The cost of capital in this case will be 9% interest that could have been earned by not investing the deposit for the business purpose. This opportunity loss of 9% is called implicit cost capital or opportunity cost.

The two factors which are considered to determine the cost of capital are:

(i) Source of Finance

(ii) Reciprocal payment of the using finance.

We will discuss the cost of capital of each source of finance separately.
4.5 COST OF LONG TERM DEBT

External borrowings or debt instruments do not confer ownership to the providers of finance. The providers of the debt fund do not participate in the affairs of the company but enjoy the charge on the profit before taxes. Long term debt includes long term loans from the financial institutions, capital from issuing debentures or bonds etc. (In the next chapter we will discuss in detail about the sources of long term debt.)

As discussed above the external borrowing or debt includes long term loan from financial institutions, issuance of debt instruments like debentures or bonds etc. The calculation of cost of loan from a financial institution is similar to that of redeemable debentures. Here we confine our discussion of cost debt to Debentures or Bonds only.

4.5.1 Features of debentures or bonds:

(i) **Face Value:** Debentures or Bonds are denominated with some value; this denominated value is called face value of the debenture. Interest is calculated on the face value of the debentures. E.g. If a company issue 9% Non-convertible debentures of ₹ 100 each, this means the face value is ₹ 100 and the interest @ 9% will be calculated on this face value.

(ii) **Interest (Coupon) Rate:** Each debenture bears a fixed interest (coupon) rate (except Zero coupon bond and Deep discount bond). Interest (coupon) rate is applied to face value of debenture to calculate interest, which is payable to the holders of debentures periodically.

(iii) **Maturity period:** Debentures or Bonds has a fixed maturity period for redemption. However, in case of irredeemable debentures maturity period is not defined and it is taken as infinite.

(iv) **Redemption Value:** Redeemable debentures or bonds are redeemed on its specified maturity date. Based on the debt covenants the redemption value is determined. Redemption value may vary from the face value of the debenture.

(v) **Benefit of tax shield:** The payment of interest to the debenture holders are allowed as expenses for the purpose of corporate tax determination. Hence, interest paid to the debenture holders save the tax liability of the company. Saving in the tax liability is also known as tax shield. The example given below will show you how interest paid by a company reduces the tax liability:

Example: There are two companies namely X Ltd. and Y Ltd. The capital of the X Ltd is fully financed by the shareholders whereas Y Ltd uses debt fund as well. The below is the profitability statement of both the companies:
A comparison of the two companies shows that an interest payment of 40 by the Y Ltd. results in a tax shield (tax saving) of ₹14 lakh (₹40 lakh paid as interest × 35% tax rate). Therefore the effective interest is ₹26 lakh only.

Based on redemption (repayment of principal) on maturity the debts can be categorised into two types (i) Irredeemable debts and (ii) Redeemable debts.

4.5.2 Cost of Irredeemable Debentures

The cost of debentures which are not redeemed by the issuer of the debenture is known as irredeemable debentures. Cost of debentures not redeemable during the life time of the company is calculated as below:

\[
\text{Cost of Irredeemable Debenture} \ (K_d) = \frac{I}{NP \ (1-t)}
\]

Where,
- \(K_d\) = Cost of debt after tax
- \(I\) = Annual interest payment
- \(NP\) = Net proceeds of debentures or current market price
- \(t\) = Tax rate

Suppose a company issues 1,000, 15% debentures of the face value of ₹100 each at a discount of ₹5. Suppose further, that the under-writing and other costs are ₹5,000/- for the total issue. Thus ₹90,000 is actually realised, i.e., ₹1,00,000 minus ₹5,000 as discount and ₹5,000 as under-writing expenses. The interest per annum of ₹15,000 is therefore the cost of ₹90,000, actually received by the company. This is because interest is a charge on profit and every year the company will save ₹7,500 as tax, assuming that the income tax rate is 50%. Hence the after tax cost of ₹90,000 is ₹7,500 which comes to 8.33%.

© The Institute of Chartered Accountants of India
ILLUSTRATION 1

Five years ago, Sona Limited issued 12 per cent irredeemable debentures at ₹ 103, at ₹ 3 premium to their par value of ₹ 100. The current market price of these debentures is ₹ 94. If the company pays corporate tax at a rate of 35 per cent what is its current cost of debenture capital?

SOLUTION

Cost of irredeemable debenture:

\[K_d = \frac{I}{NP} (1-t) \]

\[K_d = \frac{₹ 12}{₹ 94} (1-0.35) = 0.08297 \text{ or } 8.30\% \]

4.5.3 Cost of Redeemable Debentures (using approximation method)

The cost of redeemable debentures will be calculated as below:

\[
\text{Cost of Redeemable Debenture } (K_d) = \frac{I(1-t) + \frac{(RV-NP)}{n}}{\frac{(RV+NP)}{2}}
\]

Where,

- \(I \) = Interest payment
- \(NP \) = Net proceeds from debentures in case of new issue of deb or Current market price in case of existing debt.
- \(RV \) = Redemption value of debentures
- \(t \) = Tax rate applicable to the company
- \(n \) = Life of debentures.

The above formula to calculate cost of debt is used where only interest on debt is tax deductible. Sometime, debts are issued at discount and/ or redeemed at a premium. If discount on issue and/ or premium on redemption are tax deductible, the following formula can be used to calculate the cost of debt.
Cost of Redeemable Debenture \((K_d) \) = \(\frac{I + \frac{(RV-NP)}{n} - (1-t)}{\left(\frac{RV+NP}{2}\right)} \)

In absence of any specific information, students may use any of the above formulae to calculate the Cost of Debt \((K_d) \) with logical assumption.

ILLUSTRATION 2

A company issued 10,000, 10% debentures of ₹ 100 each at a premium of 10% on 1.4.2017 to be matured on 1.4.2022. The debentures will be redeemed on maturity. Compute the cost of debentures assuming 35% as tax rate.

SOLUTION

The cost of debenture \((K_d) \) will be calculated as below:

\[
K_d = \frac{I(1-t) + \frac{(RV-NP)}{n}}{\left(\frac{RV+NP}{2}\right)}
\]

\(I \) = Interest on debenture = 10% of ₹100 = ₹10

\(NP \) = Net Proceeds = 110% of ₹100 = ₹110

\(RV \) = Redemption value = ₹100

\(n \) = Period of debenture = 5 years

\(t \) = Tax rate = 35% or 0.35

\[
K_d = \frac{10(1-0.35) + \frac{(100-110)}{5}}{\left(\frac{100+110}{2}\right)}
\]

Or

\[
K_d = \frac{\frac{10 \times 0.65 - 2}{105}}{\frac{105}{2}} = \frac{4.5}{105} = 0.0428 \text{ or } 4.28\%
\]

ILLUSTRATION 3

A company issued 10,000, 10% debentures of ₹ 100 each on 1.4.2017 to be matured on 1.4.2022. The company wants to know the current cost of its existing debt and the market price of the debentures is ₹ 80. Compute the cost of existing debentures assuming 35% tax rate.
SOLUTION

Cost of debenture \((K_d) \) = \(\frac{I(1-t) + \frac{RV - NP}{n}}{(RV + NP)^2} \)

\(I \) = Interest on debenture = 10% of ₹100 = ₹10
\(NP \) = Current market price = ₹80
\(RV \) = Redemption value = ₹100
\(n \) = Period of debenture = 5 years
\(t \) = Tax rate = 35% or 0.35

\[
K_d = \frac{\text{₹10}(1-0.35)+\frac{\text{₹100-₹80}}{5 \text{ years}}}{\frac{\text{₹100+₹80}}{2}}
\]

Or, \[
= \frac{\text{₹10} \times 0.65+\frac{\text{₹4}}{90}}{\text{₹90}} = \frac{\text{₹10.5}}{\text{₹90}} = 0.1166 \text{ or } 11.67\%
\]

4.5.3.1 Cost of Debt using Present value method [Yield to maturity (YTM) approach]

The cost of redeemable debt \((K_d) \) is also calculated by discounting the relevant cash flows using Internal rate of return (IRR). (The concept of IRR is discussed in the Chapter- Investment Decisions). Here YTM is the annual return of an investment from the current date till maturity date. So, YTM is the internal rate of return at which current price of a debt equals to the present value of all cashflows.

The relevant cash flows are as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>Cash flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Net proceeds in case of new issue/ Current market price in case of existing debt (NP or (P_0))</td>
</tr>
<tr>
<td>1 to n</td>
<td>Interest net of tax ([I(1-t)])</td>
</tr>
<tr>
<td>n</td>
<td>Redemption value (RV)</td>
</tr>
</tbody>
</table>

Steps to calculate relevant cash flows:

Step-1: Identify the cash flows

Step-2: Calculate NPVs of cash flows as identified above using two discount rates (guessing).

Step-3: Calculate IRR

© The Institute of Chartered Accountants of India
Example: A company issued 10,000, 10% debentures of ₹ 100 each on 1.4.2013 to be matured on 1.4.2018. The company wants to know the current cost of its existing debt and the market price of the debentures is ₹ 80. Compute the cost of existing debentures assuming 35% tax rate.

Step-1: Identification of relevant cash flows

<table>
<thead>
<tr>
<th>Year</th>
<th>Cash flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Current market price (P_0) = ₹80</td>
</tr>
<tr>
<td>1 to 5</td>
<td>Interest net of tax [I(1-t)] = 10% of ₹100 ((1-0.35) = ₹6.5)</td>
</tr>
<tr>
<td>5</td>
<td>Redemption value (RV) = Face value i.e. ₹100</td>
</tr>
</tbody>
</table>

Step-2: Calculation of NPVs at two discount rates

<table>
<thead>
<tr>
<th>Year</th>
<th>Cash flows</th>
<th>Discount factor @ 10%</th>
<th>Present Value</th>
<th>Discount factor @ 15%</th>
<th>Present Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>80</td>
<td>1.000</td>
<td>(80.00)</td>
<td>1.000</td>
<td>(80.00)</td>
</tr>
<tr>
<td>1 to 5</td>
<td>6.5</td>
<td>3.791</td>
<td>24.64</td>
<td>3.352</td>
<td>21.79</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>0.621</td>
<td>62.10</td>
<td>0.497</td>
<td>49.70</td>
</tr>
<tr>
<td>NPV</td>
<td></td>
<td>+6.74</td>
<td></td>
<td>-8.51</td>
<td></td>
</tr>
</tbody>
</table>

Step-3: Calculation of IRR

\[
\text{IRR} = L + \frac{NPV_L}{NPV_L - NPV_H}(H-L) = 10\% + \frac{6.74}{6.74-(-8.51)}(15\%-10\%) = 12.21\%
\]

YTM or present value method is a superior method of determining cost of debt company to approximation method and it is also preferred in the field of finance.

4.5.3.2 Amortisation of Bond

A bond may be amortised every year i.e. principal is repaid every year rather than at maturity. In such a situation, the principal will go down with annual payments and interest will be computed on the outstanding amount. The cash flows of the bonds will be uneven.

The formula for determining the value of a bond or debenture that is amortised every year is as follows:
ILLUSTRATION 4

RBML is proposing to sell a 5-year bond of ₹ 5,000 at 8 per cent rate of interest per annum. The bond amount will be amortised equally over its life. What is the bond’s present value for an investor if he expects a minimum rate of return of 6 per cent?

SOLUTION

The amount of interest will go on declining as the outstanding amount of bond will be reducing due to amortisation. The amount of interest for five years will be:

First year : ₹5,000 x 0.08 = ₹ 400;
Second year : (₹5,000 – ₹1,000) x 0.08 = ₹ 320;
Third year : (₹4,000 – ₹1,000) x 0.08 = ₹ 240;
Fourth year : (₹3,000 – ₹1,000) x 0.08 = ₹ 160; and
Fifth year : (₹2,000 – ₹1,000) x 0.08 = ₹ 80.

The outstanding amount of bond will be zero at the end of fifth year.

Since RBML will have to return ₹1,000 every year, the outflows every year will consist of interest payment and repayment of principal:

First year : ₹1,000 + ₹ 400 = ₹1,400;
Second year : ₹1,000 + ₹ 320 = ₹1,320;
Third year : ₹1,000 + ₹ 240 = ₹1,240;
Fourth year : ₹1,000 + ₹ 160 = ₹1,160; and
Fifth year : ₹1,000 + ₹80 = ₹ 1,080.

The above cash flows of all five years will be discounted with the cost of capital. Here the expected rate i.e. 6% will be used.

Value of the bond is calculated as follows:

\[
V_B = \frac{C_1}{1 + K_a} + \frac{C_2}{(1 + K_a)^2} + \ldots + \frac{C_n}{(1 + K_a)^n}
\]

\[
V_B = \sum_{t=1}^{n} \frac{C_t}{(1 + K_a)^t}
\]

\[
V_B = \frac{1,400}{1.06} + \frac{1,320}{1.1236} + \frac{1,240}{1.1910} + \frac{1,160}{1.2624} + \frac{1,080}{1.3382}
\]

\[
= \frac{1,320.75 + 1,174.80 + 1,041.14 + 918.88 + 807.05}{5} = ₹ 5,262.62
\]
4.5.4 Cost of Convertible Debenture

Holders of the convertible debentures have the option to either get the debentures redeemed into the cash or get specified numbers of companies' shares in lieu of cash. The calculation of cost of convertible debentures is very much similar to the redeemable debentures. While determining the redeemable value of the debentures, it is assumed that all the debenture holders will choose the option which has the higher value and accordingly it is considered to calculate cost of debt.

Example: A company issued 10,000, 15% Convertible debentures of ₹100 each with a maturity period of 5 years. At maturity the debenture holders will have the option to convert the debentures into equity shares of the company at the ratio of 1:10 (10 shares for each debenture). The current market price of the equity shares is ₹12 each and historically the growth rate of the shares are 5% per annum. Compute the cost of debentures assuming 35% tax rate.

Determination of Redemption value:

Higher of

(i) The cash value of debentures = ₹100
(ii) Value of equity shares = 10 shares × ₹12(1+0.05)\(^5\) = 10 shares × 15.312 = ₹153.12

₹153.12 will be taken as redemption value as it is higher than the cash option and attractive to the investors.

Calculation of Cost of Convertible debenture (using approximation method):

\[
K_d = \frac{I(1-t) + \frac{(RV-NP)}{n}}{\frac{(RV+NP)}{2}} = \frac{15(1-0.35) + \frac{(153.12-100)}{5}}{\frac{(153.12+100)}{2}} = \frac{9.75+10.62}{126.53} = 16.09\%
\]

Alternatively:

Using present value method

<table>
<thead>
<tr>
<th>Year</th>
<th>Cash flows</th>
<th>Discount factor @ 15%</th>
<th>Present Value</th>
<th>Discount factor @ 20%</th>
<th>Present Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>1.000</td>
<td>(100.00)</td>
<td>1.000</td>
<td>(100.00)</td>
</tr>
<tr>
<td>1 to 5</td>
<td>9.75</td>
<td>3.352</td>
<td>32.68</td>
<td>2.991</td>
<td>29.16</td>
</tr>
<tr>
<td>5</td>
<td>153.12</td>
<td>0.497</td>
<td>76.10</td>
<td>0.402</td>
<td>61.55</td>
</tr>
<tr>
<td>NPV</td>
<td></td>
<td></td>
<td>+8.78</td>
<td></td>
<td>-9.29</td>
</tr>
</tbody>
</table>

\[
IRR = L + \frac{NPV_L}{NPV_L-NPV_H} (H-L) = 15\% + \frac{8.78}{8.78-(-9.29)} (20\%-15\%) = 0.17429 or 17.43\%
\]
4.6 **COST OF PREFERENCE SHARE CAPITAL**

The preference share capital is paid dividend at a specified rate on face value of preference shares. Payment of dividend to the preference shareholders are not mandatory but are given priority over the equity shareholder. The payment of dividend to the preference shareholders are not charged as expenses but treated as appropriation of after tax profit. Hence, dividend paid to preference shareholders does not reduce the tax liability to the company. Like the debentures, Preference share capital can be categorised as redeemable and irredeemable. Accordingly cost of capital for each type will be discussed here.

4.5.1 **Cost of Redeemable Preference Shares**

Preference shares issued by a company which are redeemed on its maturity is called redeemable preference shares. Cost of redeemable preference share is similar to the cost of redeemable debentures with the exception that the dividends paid to the preference shareholders are not tax deductible. Cost of preference capital is calculated as follows:

\[
Cost\ of\ Redeemable\ Preference\ Share\ (K_p) = \frac{PD + \frac{(RV-NP)}{n}}{\frac{(RV+NP)}{2}}
\]

Where,
- \(PD\) = Annual preference dividend
- \(RV\) = Redemption value of preference shares
- \(NP\) = Net proceeds on issue of preference shares
- \(n\) = Life of preference shares.

The cost of redeemable preference share could also be calculated as the discount rate that equates the net proceeds of the sale of preference shares with the present value of the future dividends and principal payments.
ILLUSTRATION 5

XYZ Ltd. issues 2,000 10% preference shares of ₹ 100 each at ₹ 95 each. The company proposes to redeem the preference shares at the end of 10th year from the date of issue. Calculate the cost of preference share?

SOLUTION

\[K_p = \frac{PD + \frac{(RV - NP)}{n}}{\frac{(RV + NP)}{2}} \]

\[K_p = 10 + \frac{100 - 95}{10} \times \frac{100 + 95}{2} = 0.1077 \text{ (approx.)} = 10.77\% \]

4.5.2 Cost of Irredeemable Preference Shares

The cost of irredeemable preference shares is similar to calculation of perpetuity. The cost is calculated by dividing the preference dividend with the current market price or net proceeds from the issue. The cost of irredeemable preference share is as below:

\[\text{Cost of Irredeemable Preference Share} \ (K_p) = \frac{PD}{P_0} \]

Where,

- PD = Annual preference dividend
- \(P_0 = \) Net proceeds in issue of preference shares

ILLUSTRATION 6

XYZ & Co. issues 2,000 10% preference shares of ₹ 100 each at ₹ 95 each. Calculate the cost of preference shares.

SOLUTION

\[K_p = \frac{PD}{P_0} \]

\[K_p = \frac{10 \times 2,000}{(95 \times 2,000)} = \frac{10}{95} = 0.1053 = 10.53\% \]

ILLUSTRATION 7

If R Energy is issuing preferred stock at ₹100 per share, with a stated dividend of ₹12, and a floatation cost of 3% then, what is the cost of preference share?
4.14 FINANCIAL MANAGEMENT

SOLUTION

\[K_p = \frac{\text{Preferred stock dividend}}{\text{Market price of preferred stock (1 - floatation cost)}} \]

\[= \frac{\text{₹} 12}{\text{₹} 100(1 - 0.03)} = \frac{\text{₹} 12}{\text{₹} 97} = 0.1237 \text{ or } 12.37 \%

4.7 COST OF EQUITY SHARE CAPITAL

It may prima facie appear that equity capital does not carry any cost. But this is not true. The market share price is a function of return that equity shareholders expect and get. If the company does not meet their requirements, it will have an adverse effect on the market share price. Also, it is relatively the highest cost of capital. Due to relative higher risk, equity shareholders expect higher return hence, the cost of capital is also high.

In simple words, cost of equity capital is the rate of return which equates the present value of expected dividends with the market share price. In theory, the management strives to maximize the position of equity holders and the effort involves many decisions.

Different methods are employed to compute the cost of equity share capital.

4.7.1 Dividend Price Approach

This is also known as Dividend Valuation Model. This model makes an assumption that the market price of a share is the present value of its future dividends stream. As per this approach the cost of equity is the rate which equates the future dividends to the current market price. Here, cost of equity capital is computed by dividing the expected dividend by market price per share.

Dividend Price Approach with Constant Dividend: In this approach dividend is constant, which means there is no-growth or zero growth in dividend. The cost of equity can be calculated as follows:
Cost of Equity \(K_e \) = \(\frac{D}{P_0} \)

Where,
- \(K_e \) = Cost of equity
- \(D \) = Expected dividend
- \(P_0 \) = Market price of equity (ex-dividend)

This model assumes that dividends are paid at a constant rate to perpetuity. It ignores taxation.

Dividend Price Approach with Constant Growth: As per this approach the rate of dividend growth remains constant. Where earnings, dividends and equity share price all grow at the same rate, the cost of equity capital may be computed as follows:

\[
Cost \ of \ Equity \ (K_e) = \frac{D_1}{P_0} + g
\]

Where,
- \(D_1 = [D_0 (1+g)] \) i.e. next expected dividend
- \(P_0 \) = Current Market price per share
- \(g \) = Constant Growth Rate of Dividend.

In case of newly issued equity shares where floatation cost is incurred, the cost of equity share with an estimation of constant dividend growth is calculated as below:

\[
Cost \ of \ Equity \ (K_e) = \frac{D_1}{P_0 - F} + g
\]

Where, \(F \) = Flotation cost per share.

ILLUSTRATION 8

A company has paid dividend of ₹ 1 per share (of face value of ₹ 10 each) last year and it is expected to grow @ 10% next year. Calculate the cost of equity if the market price of share is ₹ 55.

SOLUTION

\[
K_e = \frac{D_1}{P_0} + g = \frac{1(1+0.1)}{55} + 0.1 = 0.12 = 12\%
\]

Dividend Discount Model with variable growth rate is explained in chapter 10 i.e. Dividend Decision.
4.7.2 Earning/Price Approach

The advocates of this approach co-relate the earnings of the company with the market price of its share. Accordingly, the cost of equity share capital would be based upon the expected rate of earnings of a company. The argument is that each investor expects a certain amount of earnings, whether distributed or not from the company in whose shares he invests. Thus, if an investor expects that the company in which he is going to subscribe for shares should have at least a 20% rate of earning, the cost of equity share capital can be construed on this basis. Suppose the company is expected to earn 30% the investor will be prepared to pay ₹ 150 (\(\frac{30}{20} \times 100 \)) for each share of ₹ 100.

Earnings/Price Approach with Constant Earnings:

\[
\text{Cost of Equity (K)} = \frac{E}{P}
\]

Where,
- \(E \) = Current earnings per share
- \(P \) = Market share price

Since practically earnings do not remain constant and the price of equity shares is also directly influenced by the growth rate in earnings. The above formula need to be modified to reflect the growth element.

Earnings/Price Approach with Growth in Earnings:

\[
\text{Cost of Equity (K)} = \frac{E}{P} + g
\]

Where,
- \(E \) = Current earnings per share
- \(P \) = Market price per share
- \(g \) = Annual growth rate of earnings.

The Earning Price Approach is similar to the dividend price approach; only it seeks to nullify the effect of changes in the dividend policy.

Estimation of Growth Rate

The calculation of ‘g’ (the growth rate) is an important factor in calculating cost of equity share capital. Generally two methods are used to determine the growth rate, which are discussed below:
(i) **Average Method**

It calculated as below:

\[
\text{Current Dividend } (D_0) = D_n(1+g)^n \\
\text{or} \\
\text{Growth rate } (g) = \sqrt[n]{\frac{D_0}{D_n}} - 1
\]

Where,

- \(D_0\) = Current dividend,
- \(D_n\) = Dividend in \(n\) years ago

Trick: Growth rate can also be found as follows:

Step-I: Divide \(D_0\) by \(D_n\), find out the result, then refer the FVIF table,

Step-II: Find out the result found at Step-I in corresponding year’s row

Step-III: See the interest rate for the corresponding column. This is the growth rate.

Example: The current dividend \((D_0)\) is ₹16.10 and the dividend 5 year ago was ₹10. The growth rate in the dividend can found out as follows:

Step-I: Divide \(D_0\) by \(D_n\) i.e. \(\frac{16.10}{10} = 1.61\)

Step-II: Find out the result found at Step-I i.e. 1.61 in corresponding year’s row i.e. 5th year

Step-III: See the interest rate for the corresponding column which is 10%. Therefore, growth rate \((g)\) is 10%.

(ii) **Gordon’s Growth Model**

Unlike the Average method, Gordon’s growth model attempts to derive a future growth rate. As per this model increase in the level of investment will give rise to an increase in future dividends. This model takes Earnings retention rate \((b)\) and rate of return on investments \((r)\) into account to estimate the future growth rate.

It can be calculated as below:

\[
\text{Growth } (g) = b \times r
\]

Where,

- \(r\) = rate of return on fund invested
- \(b\) = earnings retention ratio/ rate*

*Proportion of earnings available to equity shareholders which is not distributed as dividend

(This Model is discussed in detail in chapter 10 i.e. Dividend Decision)
4.7.3 Realized Yield Approach

According to this approach, the average rate of return realized in the past few years is historically regarded as ‘expected return’ in the future. It computes cost of equity based on the past records of dividends actually realised by the equity shareholders. Though, this approach provides a single mechanism of calculating cost of equity, it has unrealistic assumptions like risks faced by the company remain same; the shareholders continue to expect the same rate of return; and the reinvestment opportunity cost (rate) of the shareholders is same as the realised yield. If the earnings do not remain stable, this method is not practical.

ILLUSTRATION 9

Mr. Mehra had purchased a share of Alpha Limited for ₹ 1,000. He received dividend for a period of five years at the rate of 10 percent. At the end of the fifth year, he sold the share of Alpha Limited for ₹ 1,128. You are required to compute the cost of equity as per realised yield approach.

SOLUTION

We know that as per the realised yield approach, cost of equity is equal to the realised rate of return. Therefore, it is important to compute the internal rate of return by trial and error method. This realised rate of return is the discount rate which equates the present value of the dividends received in the past five years plus the present value of sale price of ₹ 1,128 to the purchase price of ₹1,000. The discount rate which equalises these two is 12 percent approximately. Let us look at the table given for a better understanding:

<table>
<thead>
<tr>
<th>Year</th>
<th>Dividend (₹)</th>
<th>Sale Proceeds (₹)</th>
<th>Discount Factor @ 12%</th>
<th>Present Value (₹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>-</td>
<td>0.893</td>
<td>89.3</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>-</td>
<td>0.797</td>
<td>79.7</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>-</td>
<td>0.712</td>
<td>71.2</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>-</td>
<td>0.636</td>
<td>63.6</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>-</td>
<td>0.567</td>
<td>56.7</td>
</tr>
<tr>
<td>6</td>
<td>Beginning</td>
<td>1,128</td>
<td>0.567</td>
<td>639.576</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,000.076</td>
</tr>
</tbody>
</table>

We find that the purchase price of Alpha limited’s share was ₹ 1,000 and the present value of the past five years of dividends plus the present value of the sale price at the discount rate of 12 per cent is ₹1,000.076. Therefore, the realised rate of return may be taken as 12 percent. This 12 percent is the cost of equity.

4.7.4 Capital Asset Pricing Model (CAPM) Approach

CAPM model describes the risk-return trade-off for securities. It describes the linear relationship between risk and return for securities.
The risks, to which a security is exposed, can be classified into two groups:

(i) **Unsystematic Risk**: This is also called company specific risk as the risk is related with the company’s performance. This type of risk can be reduced or eliminated by diversification of the securities portfolio. This is also known as diversifiable risk.

(ii) **Systematic Risk**: It is the macro-economic or market specific risk under which a company operates. This type of risk cannot be eliminated by the diversification hence, it is non-diversifiable. The examples are inflation, Government policy, interest rate etc.

As diversifiable risk can be eliminated by an investor through diversification, the non-diversifiable risk is the risk which cannot be eliminated; therefore a business should be concerned as per CAPM method, solely with non-diversifiable risk.

The non-diversifiable risks are assessed in terms of beta coefficient (b or β) through fitting regression equation between return of a security and the return on a market portfolio.

Cost of Equity under CAPM

Thus, the cost of equity capital can be calculated under this approach as:

\[
K_e = R_f + (R_m - R_f)\beta
\]
Therefore, Required rate of return = Risk free rate + Risk premium

- The idea behind CAPM is that investors need to be compensated in two ways—time value of money and risk.
- The time value of money is represented by the risk-free rate in the formula and compensates the investors for placing money in any investment over a period of time.
- The other half of the formula represents risk and calculates the amount of compensation the investor needs for taking on additional risk. This is calculated by taking a risk measure (beta) which compares the returns of the asset to the market over a period of time and compares it to the market premium.

The CAPM says that the expected return of a security or a portfolio equals the rate on a risk-free security plus a risk premium. If this expected return does not meet or beat the required return, then the investment should not be undertaken.

The shortcomings of this approach are:
(a) Estimation of betas with historical data is unrealistic; and
(b) Market imperfections may lead investors to unsystematic risk.
Despite these shortcomings, the CAPM is useful in calculating cost of equity, even when the firm is suffering losses.

The basic factor behind determining the cost of equity share capital is to measure the expectation of investors from the equity shares of that particular company. Therefore, the whole question of determining the cost of equity shares hinges upon the factors which go into the expectations of particular group of investors in a company of a particular risk class.

ILLUSTRATION 10

Calculate the cost of equity capital of H Ltd., whose risk free rate of return equals 10%. The firm’s beta equals 1.75 and the return on the market portfolio equals to 15%.

SOLUTION

\[
K_e = R_f + \beta (R_m - R_f)
\]

\[
K_e = 0.10 + 1.75 (0.15 - 0.10)
\]

\[
= 0.10 + 1.75 (0.05)
\]

\[
= 0.1875 \text{ or } 18.75\%
\]

4.8 COST OF RETAINED EARNINGS

Like another source of fund, retained earnings involve cost. It is the opportunity cost of dividends foregone by shareholders.

The given figure depicts how a company can either keep or reinvest cash or return it to the shareholders as dividends. (Arrows represent possible cash flows or transfers.) If the cash is reinvested, the opportunity cost is the expected rate of return that shareholders could have obtained by investing in financial assets.
The cost of retained earnings is often used interchangeably with the cost of equity, as cost of retained earnings is nothing but the expected return of the shareholders from the investment in shares of the company. However, sometime cost of retained earnings remains below the cost of equity due to saving in floatation cost and existence of personal tax.

The Cost of Retained Earnings \((K_s) \) is calculated as below:

In absence of any information on personal tax \((t_p)\):

\[
K_s = K_e - t_p
\]

If there is any information on personal tax \((t_p)\):

\[
K_s = K_e - t_p
\]

Floatation Cost: The new issue of a security (debt or equity) involves some expenditure in the form of underwriting or brokerage fees, legal and administrative charges, registration fees, printing expenses etc. The sum of all these cost is known as floatation cost. This expenditure is incurred to make the securities available to the investors. Floatation cost is adjusted to arrive at net proceeds for the calculation of cost of capital.

ILLUSTRATION 11

ABC Company provides the following details:

\[
D_0 = ₹ 4.19 \quad P_0 = ₹ 50 \quad g = 5\%
\]

Calculate the cost of retained earnings.

SOLUTION

\[
K_s = \frac{D_1}{P_0} + g = \frac{D_0(1+g)}{P_0} + g
\]

\[
= \frac{₹4.19(1+0.05)}{₹50} + 0.05
\]

\[
= 0.088 + 0.05 = 13.8\%
\]

ILLUSTRATION 12

ABC Company provides the following details:

\[
R_f = 7\% \quad \beta = 1.20 \quad R_m - R_f = 6\%
\]

Calculate the cost of retained earnings based on CAPM method.

SOLUTION

\[
K_s = R_f + \beta (R_m - R_f)
\]

\[
= 7\% + 1.20 (6\%) = 7\% + 7.20
\]

\[
K_s = 14.2\%
\]
4.9 EFFECTIVE INTEREST RATE (EIR) METHOD:

After the introduction to Effective Interest Rate Method under Ind AS 109, one should be familiar with this concept as well. Though students will study this concept and the related standard in detail in the subject of Accounting/Financial reporting, a brief and relevant part of it, is stated here for reference only.

Definition of ‘Effective Interest Method’: It is ‘the rate that exactly discounts estimated future cash payments or receipts through the expected life of the financial asset or financial liability to the gross carrying amount of a financial asset or to the amortised cost of a financial liability. When calculating the effective interest rate, an entity shall estimate the expected cash flows by considering all the contractual terms of the financial instrument (for example, prepayment, extension, call and similar options) but shall not consider the expected credit losses (ECL). The calculation includes all fees and points paid or received between parties to the contract that are an integral part of the effective interest rate, transaction costs, and all other premiums or discounts. There is a presumption that the cash flows and the expected life of a group of similar financial instruments can be estimated reliably. However, in those rare cases when it is not possible to reliably estimate the cash flows or the expected life of a financial instrument (or group of financial instruments), the entity shall use the contractual cash flows over the full contractual term of the financial instrument (or group of financial instruments).’

Application of EIR Method: For floating (variable)-rate financial assets or financial liabilities, periodic re-estimation of cash flows to reflect the movements in the market rates of interest alters the effective interest rate. If the floating (variable)-rate financial asset or financial liability is recognized initially at an amount equal to the principal receivable or payable on maturity, re-estimating the future interest payments normally has no significant effect on the carrying amount of the asset or the liability.

So, depending on Materiality an appropriate approach for amortisation can be determined. If the amount of transaction costs, premiums or discount is not significant the straight line amortisation can be done. If the amounts are significant EIR rate, for amortising these amounts may be applied.

4.10 WEIGHTED AVERAGE COST OF CAPITAL (WACC)

WACC is also known as the overall cost of capital of having capitals from the different sources as explained above. WACC of a company depends on the capital structure of a company. It weighs the cost of capital of a particular source of capital with its proportion to the total capital. The weighted average cost of capital for a firm is of use in two major areas:-
1. In consideration of the firm's position;
2. Evaluation of proposed changes necessitating a change in the firm's capital. Thus, a weighted average technique may be used in a quasi-marginal way to evaluate a proposed investment project, such as the construction of a new building.

Thus, weighted average cost of capital is the weighted average after tax costs of the individual components of firm's capital structure. That is, the after tax cost of each debt and equity is calculated separately and added together to a single overall cost of capital.

The steps to calculate WACC is as follows:

Step 1: Calculate the total capital from all the sources.
(i.e. Long term debt capital + Pref. Share Capital + Equity Share Capital + Retained Earnings)

Step 2: Calculate the proportion (or %) of each source of capital to the total capital.
(i.e. Equity Share Capital (for example) / Total Capital (as calculated in Step 1 above))

Step 3: Multiply the proportion as calculated in Step 2 above with the respective cost of capital.
(i.e. $K_e \times \text{Proportion (\%)}$ of equity share capital (for example) calculated in Step 2 above)

Step 4: Aggregate the cost of capital as calculated in Step 3 above. This is the WACC.
(i.e. $K_e + K_d + K_p + K_s$ as calculated in Step 3 above)

Example:

Calculation of WACC

<table>
<thead>
<tr>
<th>Capital Component</th>
<th>Cost of Capital</th>
<th>% of total capital structure</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retained Earnings</td>
<td>10% (K_r)</td>
<td>25% (W_r)</td>
<td>2.50% ($K_r \times W_r$)</td>
</tr>
<tr>
<td>Equity Share Capital</td>
<td>11% (K_e)</td>
<td>10% (W_e)</td>
<td>1.10% ($K_e \times W_e$)</td>
</tr>
<tr>
<td>Preference Share Capital</td>
<td>9% (K_p)</td>
<td>15% (W_p)</td>
<td>1.35% ($K_p \times W_p$)</td>
</tr>
<tr>
<td>Long term debts</td>
<td>6% (K_d)</td>
<td>50% (W_d)</td>
<td>3.00% ($K_d \times W_d$)</td>
</tr>
<tr>
<td>Total (WACC)</td>
<td></td>
<td></td>
<td>7.95%</td>
</tr>
</tbody>
</table>

The cost of weighted average method is preferred because the proportions of various sources of funds in the capital structure are different. To be representative, therefore, cost of capital should take into account the relative proportions of different sources of finance.
Securities analysts employ WACC all the time when valuing and selecting investments. In discounted cash flow analysis, WACC is used as the discount rate applied to future cash flows for deriving a business’s net present value. WACC can be used as a hurdle rate against which to assess return on investment capital performance. Investors use WACC as a tool to decide whether or not to invest. The WACC represents the minimum rate of return at which a company produces value for its investors. Let’s say a company produces a return of 20% and has a WACC of 11%. By contrast, if the company’s return is less than WACC, the company is shedding value, which indicates that investors should put their money elsewhere. Therefore, WACC serves as a useful reality check for investors.

But there are problems in determination of weighted average cost of capital. These mainly relate to:–

1. Computation of equity capital and;
2. Assignment of weights to the cost of specific source of financing. Assignment of weights can be possible either on the basis of historical weighting or marginal weighting.

4.10.1 Choice of weights

There is a choice weights between the book value (BV) and market value (MV).

Book Value (BV): Book value weights is operationally easy and convenient. While using BV, reserves such as share premium and retained profits are included in the BV of equity, in addition to the nominal value of share capital. Here the value of equity will generally not reflect historic asset values, as well as the future prospects of an organisation.

Market Value (MV): Market value weight is more correct and represent a firm’s capital structure. It is preferable to use MV weights for the equity. While using MV, reserves such as share premium and retained profits are ignored as they are in effect incorporated into the value of equity. It represents existing conditions and also take into consideration the impacts of changing market conditions and the current prices of various security. Similarly, in case of debt MV is better to be used rather than the BV of the debt, though the difference may not be very significant.

ILLUSTRATION 13

Calculate the WACC using the following data by using:

(a) Book value weights
(b) Market value weights

The capital structure of the company is as under:

<table>
<thead>
<tr>
<th></th>
<th>₹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debentures (₹ 100 per debenture)</td>
<td>5,00,000</td>
</tr>
<tr>
<td>Preference shares (₹ 100 per share)</td>
<td>5,00,000</td>
</tr>
<tr>
<td>Equity shares (₹ 10 per share)</td>
<td>10,00,000</td>
</tr>
<tr>
<td>Total</td>
<td>20,00,000</td>
</tr>
</tbody>
</table>
The market prices of these securities are:

- Debentures: ₹ 105 per debenture
- Preference shares: ₹ 110 per preference share
- Equity shares: ₹ 24 each.

Additional information:
(1) ₹ 100 per debenture redeemable at par, 10% coupon rate, 4% floatation costs, 10 year maturity.
(2) ₹ 100 per preference share redeemable at par, 5% coupon rate, 2% floatation cost and 10 year maturity.
(3) Equity shares has ₹ 4 floatation cost and market price ₹ 24 per share.

The next year expected dividend is ₹ 1 with annual growth of 5%. The firm has practice of paying all earnings in the form of dividend.

Corporate tax rate is 50%.

SOLUTION

Cost of Equity (K_e) = \[\frac{D_1}{P_o - F} + g = \frac{1}{24 - 4} + 0.05 = 0.1 \text{ or } 10\% \]

Cost of Debt (K_d) = \[\frac{10(1 - 0.5) + \left(\frac{RV - NP}{n} \right)}{2} = \frac{10(1 - 0.5) + (100 - NP)}{2} \]

Cost of debt = K_d = \[\frac{10(1 - 0.5) + (100 - 96)}{100 + 96} = \left(\frac{5 + 0.4}{98} \right) = 0.055 \text{ (approx.)} \]

Cost of preference shares = K_p = \[\left(\frac{5 + \frac{2}{10}}{198/2} \right) = \left(\frac{5.2}{99} \right) = 0.053 \text{ (approx.)} \]

(a) Calculation of WACC using book value weights

<table>
<thead>
<tr>
<th>Source of capital</th>
<th>Book Value</th>
<th>Weights</th>
<th>After tax cost of capital</th>
<th>WACC (K_o)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% Debentures</td>
<td>5,00,000</td>
<td>0.25</td>
<td>0.055</td>
<td>0.0137</td>
</tr>
<tr>
<td>5% Preference shares</td>
<td>5,00,000</td>
<td>0.25</td>
<td>0.053</td>
<td>0.0132</td>
</tr>
<tr>
<td>Equity shares</td>
<td>10,00,000</td>
<td>0.50</td>
<td>0.10</td>
<td>0.0500</td>
</tr>
<tr>
<td></td>
<td>20,00,000</td>
<td>1.00</td>
<td></td>
<td>0.0769</td>
</tr>
</tbody>
</table>

WACC (K_o) = 0.0769 or 7.69%
Calculation of WACC using market value weights

<table>
<thead>
<tr>
<th>Source of capital</th>
<th>Market Value</th>
<th>Weights</th>
<th>After tax cost of capital</th>
<th>WACC (K<sub>o</sub>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% Debentures (₹105× 5,000)</td>
<td>5,25,000</td>
<td>0.151</td>
<td>0.055</td>
<td>0.008</td>
</tr>
<tr>
<td>5% Preference shares (₹110× 5,000)</td>
<td>5,50,000</td>
<td>0.158</td>
<td>0.053</td>
<td>0.008</td>
</tr>
<tr>
<td>Equity shares (₹24× 1,00,000)</td>
<td>24,00,000</td>
<td>0.691</td>
<td>0.10</td>
<td>0.069</td>
</tr>
<tr>
<td></td>
<td>34,75,000</td>
<td>1.000</td>
<td></td>
<td>0.085</td>
</tr>
</tbody>
</table>

WACC (K_o) = 0.085 or 8.5%

4.11 MARGINAL COST OF CAPITAL

The marginal cost of capital may be defined as the cost of raising an additional rupee of capital. Since the capital is raised in substantial amount in practice, marginal cost is referred to as the cost incurred in raising new funds. Marginal cost of capital is derived, when the average cost of capital is calculated using the marginal weights.

The marginal weights represent the proportion of funds the firm intends to employ. Thus, the problem of choosing between the book value weights and the market value weights does not arise in the case of marginal cost of capital computation.

To calculate the marginal cost of capital, the intended financing proportion should be applied as weights to marginal component costs. The marginal cost of capital should, therefore, be calculated in the composite sense. When a firm raises funds in proportional manner and the component’s cost remains unchanged, there will be no difference between average cost of capital (of the total funds) and the marginal cost of capital. The component costs may remain constant up to certain level of funds raised and then start increasing with amount of funds raised.

For example, the cost of debt may remain 7% (after tax) till ₹10 lakhs of debt is raised, between ₹10 lakhs and ₹15 lakhs, the cost may be 8% and so on. Similarly, if the firm has to use the external equity when the retained profits are not sufficient, the cost of equity will be higher because of the floatation costs. When the components cost start rising, the average cost of capital will rise and the marginal cost of capital will however, rise at a faster rate.

ILLUSTRATION 14

ABC Ltd. has the following capital structure which is considered to be optimum as on 31st March, 2017.
The company share has a market price of ₹ 23.60. Next year dividend per share is 50% of year 2017 EPS. The following is the trend of EPS for the preceding 10 years which is expected to continue in future.

<table>
<thead>
<tr>
<th>Year</th>
<th>EPS (₹)</th>
<th>Year</th>
<th>EPS (₹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>1.00</td>
<td>2013</td>
<td>1.61</td>
</tr>
<tr>
<td>2009</td>
<td>1.10</td>
<td>2014</td>
<td>1.77</td>
</tr>
<tr>
<td>2010</td>
<td>1.21</td>
<td>2015</td>
<td>1.95</td>
</tr>
<tr>
<td>2011</td>
<td>1.33</td>
<td>2016</td>
<td>2.15</td>
</tr>
<tr>
<td>2012</td>
<td>1.46</td>
<td>2017</td>
<td>2.36</td>
</tr>
</tbody>
</table>

The company issued new debentures carrying 16% rate of interest and the current market price of debenture is ₹ 96.

Preference share ₹ 9.20 (with annual dividend of ₹ 1.1 per share) were also issued. The company is in 50% tax bracket.

(A) Calculate after tax:
 (i) Cost of new debt
 \[
 K_d = \frac{I}{P_0}(1-t) = \frac{16}{96}(1-0.5) = 0.0833
 \]
 (ii) Cost of new preference shares
 \[
 K_p = \frac{PD}{P_0} = \frac{1.1}{9.2} = 0.12
 \]

(B) Calculate marginal cost of capital when no new shares are issued.

(C) How much can be spent for capital investment before new ordinary shares must be sold. Assuming that retained earnings for next year’s investment are 50 percent of 2017.

(D) What will the marginal cost of capital when the funds exceeds the amount calculated in (C), assuming new equity is issued at ₹ 20 per share?

SOLUTION

(A) (i) Cost of new debt

\[
K_d = \frac{I}{P_0}(1-t) = \frac{16}{96}(1-0.5) = 0.0833
\]

(ii) Cost of new preference shares

\[
K_p = \frac{PD}{P_0} = \frac{1.1}{9.2} = 0.12
\]
(iii) Cost of new equity shares

\[K_e = \frac{D_1}{P_0} + g \]

\[= \frac{1.18}{23.60} + 0.10 = 0.05 + 0.10 = 0.15 \]

Calculation of \(D_1 \)

\[D_1 = 50\% \text{ of } 2013 \text{ EPS} = 50\% \text{ of } 2.36 = \text{ ₹ 1.18} \]

(B) Calculation of marginal cost of capital

| Type of Capital | Proportion | Specific Cost | Product
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Debenture</td>
<td>0.15</td>
<td>0.0833</td>
<td>0.0125</td>
</tr>
<tr>
<td>Preference Share</td>
<td>0.05</td>
<td>0.12</td>
<td>0.0060</td>
</tr>
<tr>
<td>Equity Share (New)</td>
<td>0.80</td>
<td>0.15</td>
<td>0.1200</td>
</tr>
<tr>
<td>Marginal cost of capital</td>
<td>0.1385</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(C) The company can spend the following amount without increasing marginal cost of capital and without selling the new shares:

Retained earnings = (0.50) (2.36 × 10,000) = ₹ 11,800

The ordinary equity (Retained earnings in this case) is 80% of total capital

\[11,800 = 80\% \text{ of Total Capital} \]

\[\therefore \text{ Capital investment before issuing equity} = \frac{11,800}{0.80} = \text{ ₹ 14,750} \]

(D) If the company spends in excess of ₹ 14,750 it will have to issue new shares.

\[\therefore \text{ Capital investment before issuing equity} = \frac{1.18}{20} + 0.10 = 0.159 \]

The marginal cost of capital will be:

<table>
<thead>
<tr>
<th>Type of Capital</th>
<th>Proportion</th>
<th>Specific Cost</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Debentures</td>
<td>0.15</td>
<td>0.0833</td>
<td>0.0125</td>
</tr>
<tr>
<td>Preference Shares</td>
<td>0.05</td>
<td>0.1200</td>
<td>0.0060</td>
</tr>
<tr>
<td>Equity Shares (New)</td>
<td>0.80</td>
<td>0.1590</td>
<td>0.1272</td>
</tr>
<tr>
<td>Marginal cost of capital</td>
<td>0.1457</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY

- **Cost of Capital:** In simple terms Cost of capital refers to the discount rate that is used in determining the present value of the estimated future cash proceeds of the business/new project and eventually deciding whether the business/new project is worth undertaking or now. It is also the minimum rate of return that a firm must earn on its investment which will maintain the market value of share at its current level. It can also be stated as the opportunity cost of an investment, i.e. the rate of return that a company would otherwise be able to earn at the same risk level as the investment that has been selected.

- **Components of Cost of Capital:** In order to calculate the specific cost of each type of capital, recognition should be given to the explicit and the implicit cost. The cost of capital can be either explicit or implicit. The explicit cost of any source of capital may be defined as the discount rate that equals that present value of the cash inflows that are incremental to the taking of financing opportunity with the present value of its incremental cash outflows. Implicit cost is the rate of return associated with the best investment opportunity for the firm and its shareholders that will be foregone if the project presently under consideration by the firm was accepted.

- **Measurement of Specific Cost of Capital for each source of Capital:** The first step in the measurement of the cost of the capital of the firm is the calculation of the cost of individual sources of raising funds. From the viewpoint of capital budgeting decisions, the long term sources of funds are relevant as they constitute the major sources of financing the fixed assets. In calculating the cost of capital, therefore the focus on long-term funds and which are:-
 - Long term debt (including Debentures)
 - Preference Shares
 - Equity Capital
 - Retained Earnings

- **Weighted Average Cost of Capital:** WACC (weighted average cost of capital) represents the investors’ opportunity cost of taking on the risk of putting money into a company. Since every company has a capital structure i.e. what percentage of funds comes from retained earnings, equity shares, preference shares, debt and bonds, so by taking a weighted average, it can be seen how much cost/interest the company has to pay for every rupee it borrows/invest. This is the weighted average cost of capital.
TEST YOUR KNOWLEDGE

MCQs based Questions

1. Which of the following is not an assumption of the capital asset pricing model (CAPM)?
 (a) The capital Market is efficient
 (b) Investors lend or borrow at a risk-free rate of return
 (c) Investors do not have the same expectations about the risk and return
 (d) Investor’s decisions are based on a single-time period

2. Given: risk-free rate of return = 5 % market return = 10%, cost of equity = 15%
 value of beta (β) is:
 (a) 1.9
 (b) 1.8
 (c) 2.0
 (d) 2.2

3. Which of the following sources of funds is related to Implicit Cost of Capital?
 (a) Equity Share Capital,
 (b) Preference Share Capital,
 (c) Debentures,
 (d) Retained earnings.

4. Which of the following cost of capital require to adjust tax?
 (a) Cost of Equity Shares,
 (b) Cost of Preference Shares,
 (c) Cost of Debentures,
 (d) Cost of Retained Earnings.

5. Marginal Cost of capital is the cost of:
 (a) Additional Revenue,
 (b) Additional Funds,
 (c) Additional Interests,
 (d) None of the above.

6. In order to calculate Weighted Average Cost of Capital, weights may be based on:
 (a) Market Values,
 (b) Target Values
 (c) Book Values,
 (d) Anyone.
7. Firm’s Cost of Capital is the average cost of:
 (a) All sources of finance,
 (b) All Borrowings,
 (c) All share capital,
 (d) All Bonds & Debentures.

Theoretical based Questions

1. What is meant by weighted average cost of capital? Illustrate with an example.
2. Discuss the dividend-price approach, and earnings price approach to estimate cost of equity capital.
3. What is the difference between Book Value and Market Value?
4. What is Marginal Cost of Capital?
5. Explain YTM approach of calculating Cost of Debt.
6. What is the meaning of Amortisation of Bond?

Practical Problems

1. Determine the cost of capital of Best Luck Limited using the book value (BV) and market value (MV) weights from the following information:

<table>
<thead>
<tr>
<th>Sources</th>
<th>Book Value</th>
<th>Market Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equity shares</td>
<td>1,20,00,000</td>
<td>2,00,00,000</td>
</tr>
<tr>
<td>Retained earnings</td>
<td>30,00,000</td>
<td>—</td>
</tr>
<tr>
<td>Preference shares</td>
<td>36,00,000</td>
<td>33,75,000</td>
</tr>
<tr>
<td>Debentures</td>
<td>9,00,000</td>
<td>10,40,000</td>
</tr>
</tbody>
</table>

Additional information:

I. Equity: Equity shares are quoted at ₹ 130 per share and a new issue priced at ₹ 125 per share will be fully subscribed; flotation costs will be ₹ 5 per share.

II. Dividend: During the previous 5 years, dividends have steadily increased from ₹ 10.60 to ₹ 14.19 per share. Dividend at the end of the current year is expected to be ₹ 15 per share.

III. Preference shares: 15% Preference shares with face value of ₹ 100 would realise ₹ 105 per share.

IV. Debentures: The company proposes to issue 11-year 15% debentures but the yield on debentures of similar maturity and risk class is 16%; flotation cost is 2%.

V. Tax: Corporate tax rate is 35%. Ignore dividend tax.
2. Gamma Limited has in issue 5,00,000 ₹ 1 ordinary shares whose current ex-dividend market price is ₹ 1.50 per share. The company has just paid a dividend of 27 paise per share, and dividends are expected to continue at this level for some time. If the company has no debt capital, what is the weighted average cost of capital?

3. Masco Limited wishes to raise additional finance of ₹ 10 lakhs for meeting its investment plans. It has ₹ 2,10,000 in the form of retained earnings available for investment purposes. Further details are as following:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>Debt / equity mix</td>
<td>30%/70%</td>
</tr>
<tr>
<td>(2)</td>
<td>Cost of debt</td>
<td></td>
</tr>
<tr>
<td>Upto ₹ 1,80,000</td>
<td>10% (before tax)</td>
<td></td>
</tr>
<tr>
<td>Beyond ₹ 1,80,000</td>
<td>16% (before tax)</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>Earnings per share</td>
<td>₹ 4</td>
</tr>
<tr>
<td>(4)</td>
<td>Dividend pay out</td>
<td>50% of earnings</td>
</tr>
<tr>
<td>(5)</td>
<td>Expected growth rate in dividend</td>
<td>10%</td>
</tr>
<tr>
<td>(6)</td>
<td>Current market price per share</td>
<td>₹ 44</td>
</tr>
<tr>
<td>(7)</td>
<td>Tax rate</td>
<td>50%</td>
</tr>
</tbody>
</table>

You are required:

(a) To determine the pattern for raising the additional finance.
(b) To determine the post-tax average cost of additional debt.
(c) To determine the cost of retained earnings and cost of equity, and
(d) Compute the overall weighted average after tax cost of additional finance.

4. The following details are provided by the GPS Limited:

<table>
<thead>
<tr>
<th></th>
<th>(₹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equity Share Capital</td>
<td>65,00,000</td>
</tr>
<tr>
<td>12% Preference Share Capital</td>
<td>12,00,000</td>
</tr>
<tr>
<td>15% Redeemable Debentures</td>
<td>20,00,000</td>
</tr>
<tr>
<td>10% Convertible Debentures</td>
<td>8,00,000</td>
</tr>
</tbody>
</table>

The cost of equity capital for the company is 16.30% and Income Tax rate for the company is 30%.

You are required to calculate the Weighted Average Cost of Capital (WACC) of the company.

ANSWERS/SOLUTIONS

Answers to the MCQs based Questions

1. (c) 2. (c) 3. (d) 4. (c) 5. (b) 6. (d) 7. (a)
Answers to the Theoretical Questions

1. Please refer paragraph 4.10
2. Please refer paragraph 4.7.1
3. Please refer paragraph 4.10.1
4. Please refer paragraph 4.11
5. Please refer paragraph 4.5.3.1
6. Please refer paragraph 4.5.3.2

Answers to the Practical Problems

1. (i) Cost of Equity \((K_e) \) = \(\frac{D_1}{P_0-F} + g = \frac{15}{125-5} + 0.06 \) (refer to workingnote)

\[K_e = 0.125 + 0.06 = 0.185 \]

Working Note: Calculation of ‘g’

\[10.6(1+g)^5 = 14.19 \text{ Or, } (1+g)^5 = \frac{14.19}{10.6} = 1.338 \]

Table (FVIF) suggests that ₹1 compounds to ₹1.338 in 5 years at the compound rate of 6 percent. Therefore, g is 6 per cent.

(iii) Cost of Retained Earnings \((K_s) \) = \(\frac{D_1}{P_0} + g = \frac{15}{125} + 0.06 = 0.18 \)

(iv) Cost of Preference Shares \((K_p) \) = \(\frac{PD}{P_0} = \frac{15}{105} = 0.1429 \)

(iv) Cost of Debentures \((K_d) \) = \(\frac{I(1-t)+\left(\frac{RV-NP}{n}\right)}{RV+NP} \)

\[= \frac{15(1-0.35)+\left(\frac{100-91.75^*}{11\text{ years}}\right)}{100+91.75^*} \]

\[= \frac{15 \times 0.65 + 90}{2} = \frac{10.5}{95.875} = 0.1095 \]

*Since yield on similar type of debentures is 16 per cent, the company would be required to offer debentures at discount.
Market price of debentures (approximation method) = Coupon rate ÷ Market rate of interest
= ₹ 15 ÷ 0.16 = ₹ 93.75
Sale proceeds from debentures = ₹93.75 – ₹ 2 (i.e., floatation cost) = ₹91.75

Market value \((P_0) \) of debentures can also be found out using the present value method:
\[
P_0 = \text{Annual Interest} \times \text{PVIFA} \left(16\%, \ 11 \text{ years}\right) + \text{Redemption value} \times \text{PVIF} \left(16\%, \ 11 \text{ years}\right)
\]
\[
P_0 = ₹15 \times 5.029 + ₹100 \times 0.195
\]
\[
P_0 = ₹75.435 + ₹19.5 = ₹ 94.935
\]
Net Proceeds = ₹94.935 – 2% of ₹100 = ₹ 92.935

Accordingly, the cost of debt can be calculated

<table>
<thead>
<tr>
<th>Source of capital</th>
<th>Weights</th>
<th>Specific Cost (K)</th>
<th>Total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BV</td>
<td>MV</td>
<td>(BV × K)</td>
</tr>
<tr>
<td>Equity Shares</td>
<td>120</td>
<td>160*</td>
<td>0.1850</td>
</tr>
<tr>
<td>Retained Earnings</td>
<td>30</td>
<td>40*</td>
<td>0.1800</td>
</tr>
<tr>
<td>Preference Shares</td>
<td>9</td>
<td>10.4</td>
<td>0.1429</td>
</tr>
<tr>
<td>Debentures</td>
<td>36</td>
<td>33.75</td>
<td>0.1095</td>
</tr>
<tr>
<td>Total</td>
<td>195</td>
<td>244.15</td>
<td>32.83</td>
</tr>
</tbody>
</table>

*Market Value of equity has been apportioned in the ratio of Book Value of equity and retained earnings

Weighted Average Cost of Capital (WACC):
\[
\text{Using Book Value} = \frac{32.83}{195} = 0.1684 \text{ or } 16.84\%
\]
\[
\text{Using Market Value} = \frac{41.99}{244.15} = 0.172 \text{ or } 17.2\%
\]

2. Market value of equity, \(E = 5,00,000 \times ₹1.50 = ₹7,50,000 \)
Market value of debt, \(D = \text{Nil} \)
Cost of equity capital, \(K_e = \frac{D_1}{P_0} = \frac{0.27}{1.50} = 0.18 \)
Since there is no debt capital, \(WACC = K_e = 18 \text{ per cent.} \)
3. (a) **Pattern of raising additional finance**

<table>
<thead>
<tr>
<th>Finance</th>
<th>Percentage</th>
<th>Amount (₹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equity</td>
<td>70%</td>
<td>10,00,000</td>
</tr>
<tr>
<td>Debt</td>
<td>30%</td>
<td>10,00,000</td>
</tr>
</tbody>
</table>

Equity: 70% of ₹10,00,000 = ₹7,00,000
Debt: 30% of ₹10,00,000 = ₹3,00,000

The capital structure after raising additional finance:

<table>
<thead>
<tr>
<th>Shareholders’ funds</th>
<th>₹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equity Capital (7,00,000–2,10,000)</td>
<td>4,90,000</td>
</tr>
<tr>
<td>Retained earnings</td>
<td>2,10,000</td>
</tr>
<tr>
<td>Debt (Interest at 10% p.a.)</td>
<td>1,80,000</td>
</tr>
<tr>
<td>(Interest at 16% p.a.)</td>
<td>1,20,000</td>
</tr>
<tr>
<td>Total Funds</td>
<td>10,00,000</td>
</tr>
</tbody>
</table>

(b) **Determination of post-tax average cost of additional debt**

\[
K_d = l (1 - t)
\]

Where,

\[
l = \text{Interest Rate} \\
(t = \text{Corporate tax-rate})
\]

On ₹1,80,000 = 10% (1 – 0.5) = 5% or 0.05
On ₹1,20,000 = 16% (1 – 0.5) = 8% or 0.08

Average Cost of Debt

\[
= \left(\frac{₹1,80,000 	imes 0.05 + ₹1,20,000 	imes 0.08}{₹3,00,000} \right)
\times 100 = 6.2\%
\]

(c) **Determination of cost of retained earnings and cost of equity applying Dividend growth model**

\[
K_e = \frac{D_1}{P_0} + g
\]

Where,

\[
K_e = \text{Cost of equity} \\
D_1 = D_0(1 + g) \\
D_0 = \text{Dividend paid (i.e., 50% of EPS = 50% \times ₹4 = ₹2)} \\
g = \text{Growth rate} \\
P_0 = \text{Current market price per share}
\]

Then, \[
K_e = \frac{₹2(1.1)}{₹44} + 0.10 = \frac{₹2.2}{₹44} + 0.10 = 0.05 + 0.10 = 0.15 = 15\%
\]
(d) Computation of overall weighted average after tax cost of additional finance

<table>
<thead>
<tr>
<th>Particular</th>
<th>₹</th>
<th>Weights</th>
<th>Cost of funds</th>
<th>Weighted Cost (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equity (including retained earnings)</td>
<td>7,00,000</td>
<td>0.70</td>
<td>15%</td>
<td>10.5</td>
</tr>
<tr>
<td>Debt</td>
<td>3,00,000</td>
<td>0.30</td>
<td>6.2%</td>
<td>1.86</td>
</tr>
<tr>
<td>WACC</td>
<td>10,00,000</td>
<td></td>
<td></td>
<td>12.36</td>
</tr>
</tbody>
</table>

4. Calculation of Weighted Average Cost of Capital (WACC)

<table>
<thead>
<tr>
<th>Source</th>
<th>Amount (₹)</th>
<th>Weight</th>
<th>Cost of Capital after tax</th>
<th>WACC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equity Capital</td>
<td>65,00,000</td>
<td>0.619</td>
<td>0.163</td>
<td>0.1009</td>
</tr>
<tr>
<td>12% Preference Capital</td>
<td>12,00,000</td>
<td>0.114</td>
<td>0.120</td>
<td>0.0137</td>
</tr>
<tr>
<td>15% Redeemable Debentures</td>
<td>20,00,000</td>
<td>0.190</td>
<td>0.105*</td>
<td>0.020</td>
</tr>
<tr>
<td>10% Convertible Debentures</td>
<td>8,00,000</td>
<td>0.076</td>
<td>0.07**</td>
<td>0.0053</td>
</tr>
<tr>
<td>Total</td>
<td>1,05,00,000</td>
<td>1.0000</td>
<td></td>
<td>0.1399</td>
</tr>
</tbody>
</table>

* Cost of Debentures (after tax) = 15 (1 – 0.30) = 10.5% = 0.105
** Cost of Debentures (after tax) = 10 (1 – 0.30) = 7% = 0.07

Weighted Average Cost of Capital = 0.1399 = 13.99%

(Note: In the above solution, the Cost of Debentures has been computed in the above manner without considering the impact of special features i.e. redeemability and convertibility in absence of requisite information.)