Portfolio Theory

BASIC CONCEPTS AND FORMULAE

1. Introduction

Portfolio theory guides investors about the method of selecting securities that will provide the highest expected rate of return for any given degree of risk or that will expose the investor to a degree of risk for a given expected rate of return.

2. Different Portfolio Theories

Some of the important theories of portfolio management are:

(a) Traditional Approach

The traditional approach to portfolio management concerns itself with the investor’s profile; definition of portfolio objectives with reference to maximising the investors' wealth which is subject to risk; investment strategy; diversification and selection of individual investment.

(b) Dow Jones Theory

The Dow Jones theory classifies the movements of the prices on the share market into three major categories:

- **Primary movements**: They reflect the trend of the stock market and last from one year to three years, or sometimes even more.
- **Secondary movements**: They are shorter in duration and are opposite in direction to the primary movements.
- **Daily fluctuations**: These are irregular fluctuations which occur every day in the market. These fluctuations are without any definite trend.

Dow Jones theory identifies the turn in the market prices by seeing whether the successive peaks and troughs are higher or lower than earlier.

(c) Efficient Market Theory

The basic premise of this theory is that all market participants receive and act on all the relevant information as soon as it becomes available in the stock market. There exists three levels of market efficiency:-
7.2 Strategic Financial Management

- **Weak form efficiency** – Prices reflect all information found in the record of past prices and volumes.
- **Semi – Strong efficiency** – Prices reflect not only all information found in the record of past prices and volumes but also all other publicly available information.
- **Strong form efficiency** – Prices reflect all available information public as well as private.

(d) **Random Walk Theory**

Random Walk hypothesis states that the behaviour of stock market prices is unpredictable and that there is no relationship between the present prices of the shares and their future prices. Basic premises of the theory are as follows:

- Prices of shares in stock market can never be predicted. The reason is that the price trends are not the result of any underlying factors, but that they represent a statistical expression of past data.
- There may be periodical ups or downs in share prices, but no connection can be established between two successive peaks (high price of stocks) and troughs (low price of stocks).

3. **Markowitz Model of Risk-Return Optimization**

According to the model, investors are mainly concerned with two properties of an asset: risk and return, but by diversification of portfolio it is possible to trade off between them. The essence of the theory is that risk of an individual asset hardly matters to an investor. The investor is more concerned to the contribution it makes to his total risk.

Efficient Frontier: Markowitz has formalised the risk return relationship and developed the concept of efficient frontier. For selection of a portfolio, comparison between combinations of portfolios is essential. The investor has to select a portfolio from amongst all those represented by the efficient frontier. This will depend upon his risk-return preference. As different investors have different preferences with respect to expected return and risk, the optimal portfolio of securities will vary considerably among investors.

As a rule, a portfolio is not efficient if there is another portfolio with:

- A higher expected value of return and a lower standard deviation (risk).
- A higher expected value of return and the same standard deviation (risk)
- The same expected value but a lower standard deviation (risk)

4. **Capital Asset Pricing Model (CAPM)**

CAPM model describes the linear relationship risk-return trade-off for
securities/portfolios. A graphical representation of CAPM is the Security Market Line, (SML), which indicates the rate of return required to compensate at a given level of risk. The risks to which a security/portfolio is exposed are divided into two groups, diversifiable and non-diversifiable.

The **diversifiable risk** can be eliminated through a portfolio consisting of large number of well diversified securities. Whereas, the **non-diversifiable risk** is attributable to factors that affect all businesses like Interest Rate Changes, Inflation, Political Changes, etc.

As diversifiable risk can be eliminated by an investor through diversification, the non-diversifiable risk is the only risk a business should be concerned with. The CAPM method also is solely concerned with non-diversifiable risk.

The non-diversifiable risks are assessed in terms of beta coefficient, β, through fitting regression equation between return of a security/portfolio and the return on a market portfolio.

$$R_i = R_f + \beta (R_m - R_f)$$

Where,

- $R_f =$ Risk free rate
- $R_m =$ Market Rate
- $\beta =$ Beta of Portfolio

5. Arbitrage Pricing Theory Model (APT)

The APT was developed by Ross in 1976. It holds that there are four factors which explain the risk premium relationship of a particular security - inflation and money supply, interest rate, industrial production and personal consumption. It is a multi-factor model having a whole set of Beta Values – one for each factor. Further, it states that the expected return on an investment is dependent upon how that investment reacts to a set of individual macro-economic factors (degree of reaction measured by the Betas) and the risk premium associated with each of the macro – economic factors.

$$E (R_i) = R_f + \lambda_1 \beta_{i1} + \lambda_2 \beta_{i2} + \lambda_3 \beta_{i3} + \lambda_4 \beta_{i4}$$

Where,

- $\lambda_1, \lambda_2, \lambda_3, \lambda_4$ are average risk premium for each of the four factors in the model and
- $\beta_{i1}, \beta_{i2}, \beta_{i3}, \beta_{i4}$ are measures of sensitivity of the particular security i to each of the four factors.
6. Sharpe Index Model

(a) Single Index Model

William Sharpe developed the Single index model. The single index model is based on the assumption that stocks vary together because of the common movement in the stock market and there are no effects beyond the market (i.e. any fundamental factor effects) that account the stocks co-movement. The expected return, standard deviation and co-variance of the single index model represent the joint movement of securities. The return on stock is:

\[R_i = \alpha_i + \beta_i R_m + \epsilon_i \]

The mean return is:

\[R_i = \alpha_i + \beta_i R_m + \epsilon_i \]

Where,

- \(R_i \) = expected return on security i
- \(\alpha_i \) = intercept of the straight line or alpha co-efficient
- \(\beta_i \) = slope of straight line or beta co-efficient
- \(R_m \) = the rate of return on market index
- \(\epsilon_i \) = error term.

The variance of security’s return:

\[\sigma_i^2 = \beta_i^2 \sigma_m^2 + \sigma_{\epsilon_i}^2 \]

The covariance of returns between securities i and j is:

\[\sigma_{ij} = \beta_i \beta_j \sigma_m^2 \]

Systematic risk = \(\beta_i^2 \times \) variance of market index

\[= \beta_i^2 \sigma_m^2 \]

Unsystematic risk = Total variance - Systematic risk.

\[\epsilon_i^2 = \sigma_i^2 - \text{Systematic risk.} \]

Thus, the total risk = Systematic risk + Unsystematic risk.

\[= \beta_i^2 \sigma_m^2 + \epsilon_i^2. \]
Portfolio variance can be derived

\[
\sigma_p^2 = \left[\left(\sum_{i=1}^{N} x_i \beta_i \right)^2 \sigma_m^2 + \left(\sum_{i=1}^{N} x_i^2 \varepsilon_i^2 \right) \right]
\]

Expected return on the portfolio

\[
R_p = \sum_{i=1}^{N} x_i (\alpha_i + \beta_i R_m)
\]

A portfolio's alpha value is a weighted average of the alpha values for its component securities using the proportion of the investment in a security as weight.

\[
\sigma_p = \sum_{i=1}^{N} x_i \alpha_i
\]

A portfolio's beta value is the weighted average of the beta values of its component stocks using relative share of them in the portfolio as weights.

\[
\sigma_p = \sum_{i=1}^{N} x_i \beta_i
\]

(b) Sharpe's and Treynor's Ratio

These two ratios measure the Risk Premium per unit of Risk for a security or a portfolio of securities and provide the tools for comparing the performance of diverse securities and portfolios.

Sharpe Ratio is defined as

\[
\frac{R_i - R_f}{\sigma_i}
\]

and Treynor Ratio is defined as

\[
\frac{R_i - R_f}{\beta_i}
\]

Where,

- \(R \) = Expected return on stock \(i \)
- \(R_f \) = Return on a risk less asset
- \(\sigma_i \) = Standard Deviation of the rates of return for the \(i \)th Security
- \(\beta_i \) = Expected change in the rate of return on stock \(i \) associated with one unit change in the market return
Sharpe's Optimal Portfolio

The steps for finding out the stocks to be included in the optimal portfolio are given below:

(i) Find out the "excess return to beta" ratio for each stock under consideration.

(ii) Rank them from the highest to the lowest.

(iii) Proceed to calculate C_i for all the stocks/portfolios according to the ranked order using the following formula:

$$C_i = \frac{\sigma_m^2 \sum_{i=1}^{N} \left(R_i - R_f \right) \beta_i}{\sigma^2_{ei}}$$

$$1 + \sigma_m^2 \sum_{i=1}^{N} \frac{\beta_i^2}{\sigma^2_{ei}}$$

Where,

- σ_m^2 = variance of the market index
- σ^2_{ei} = variance of a stock's movement that is not associated with the movement of market index i.e. stock's unsystematic risk.

(iv) Compute the cut-off point which the highest value of C_i and is taken as C^*. The stock whose excess-return to risk ratio is above the cut-off ratio are selected and all whose ratios are below are rejected. The main reason for this selection is that since securities are ranked from highest excess return to Beta to lowest, and if particular security belongs to optional portfolio all higher ranked securities also belong to optimal portfolio.

(v) Once we came to know which securities are to be included in the optimum portfolio, we shall calculate the percent to be invested in each security by using the following formula:

$$x_i^0 = \frac{Z_i}{\sum_{j=1}^{N} Z_j}$$

© The Institute of Chartered Accountants of India
where
\[Z_i = \frac{\beta_i}{\sigma_{ei}^2} \left(\frac{R_i - R^*}{\beta_i} - C^* \right) \]

The first portion determines the weight each stock and total comes to 1 to ensure that all funds are invested and second portion determines the relative investment in each security.

7. Portfolio Management

The objective of portfolio management is to achieve the maximum return from a portfolio which has been delegated to be managed by an individual manager or a financial institution. The manager has to balance the parameters which define a good investment i.e. security, liquidity and return. The goal is to obtain the highest return for the investor of the portfolio.

(a) Objectives of Portfolio Management

(i) Security/Safety of Principal;

(ii) Stability of Income;

(iii) Capital Growth;

(iv) Marketability i.e. the case with which a security can be bought or sold;

(v) Liquidity i.e. nearness to money;

(vi) Diversification; and

(vii) Favourable Tax Status.

(b) Activities in Portfolio Management

The following three major activities are involved in an efficient portfolio management:

(i) Identification of assets or securities, allocation of investment and identifying asset classes.

(ii) Deciding about major weights/proportion of different assets/securities in the portfolio.

(iii) Security selection within the asset classes as identified earlier.

(c) Basic Principles of Portfolio Management

(i) Effective investment planning for the investment in securities; and

(ii) Constant review of investment.
7.8 Strategic Financial Management

(d) Factors Affecting Investment Decision in Portfolio Management

Given a certain amount of funds, the investment decision basically depends upon the following factors:

(i) Objectives of Investment Portfolio
(ii) Selection of Investment, and
(iii) Timing of Purchases.

(e) Formulation of Portfolio Strategy

(i) **Active Portfolio Strategy (APS):** An APS is followed by most investment professionals and aggressive investors who strive to earn superior return after adjustment for risk.

(ii) **Passive Portfolio Strategy:** Passive strategy rests on the tenet that the capital market is fairly efficient with respect to the available information.

8. Principles and Management of Hedge Funds

Hedge Fund is an aggressively managed portfolio of investments that uses advanced investment strategies such as leverage, long, short and derivative positions in both domestic and international markets with the goal of generating high returns.

9. International Portfolio Management

The objective of portfolio investment management is to consider an optimal portfolio where the risk-return trade off is optimal. The return may be maximum at a certain level of risk or the risk may be minimum at a certain level of return. It is therefore necessary to determine whether optimization of international portfolio can be achieved by striking a balance between risk and return.

10. Important Formulae

(a) Expected Return from a Security

\[1 + R_{HC} = \left[1 + \frac{(S_1 - S_0 + I)}{S_0} \right] \times 1 + e \]

Where,
- \(S_0 \) = Home country currency value of security during preceding time period \(t_0 \)
- \(S_1 \) = Home country currency value of security during succeeding time period \(t_1 \)
- \(I \) = Income from interest and dividend
- \(e \) = Change in exchange rate.

(b) Portfolio Return

\[R_P = R_A W_A + R_B W_B \]
(c) Covariance between two sets of returns A_1, and A_2 is given by:

$$\text{Cov}(A_1, A_2) = P_1(A_1 - \overline{A}_1)(A_2 - \overline{A}_2) + P_2(A_1 - \overline{A}_1)(A_2 - \overline{A}_2)$$

Correlation Coefficient $\rho_{12} = \frac{\text{Cov}(A_1, A_2)}{\sigma_1 \sigma_2}$

(d) Portfolio Risk

$$\sigma_p = \left[w_1^2 \text{Var} A_1 + w_2^2 \text{Var} A_2 + 2(w_1)(w_2) \text{Cov}(A_1, A_2) \right]^\frac{1}{2}$$

Question 1

Write short note on Factors affecting investment decisions in portfolio management.

Answer

Factors affecting Investment Decisions in Portfolio Management

(i) Objectives of investment portfolio: There can be many objectives of making an investment. The manager of a provident fund portfolio has to look for security (low risk) and may be satisfied with none too higher return. An aggressive investment company may, however, be willing to take a high risk in order to have high capital appreciation.

(ii) Selection of investment

(a) What types of securities to buy or invest in? There is a wide variety of investments opportunities available i.e. debentures, convertible bonds, preference shares, equity shares, government securities and bonds, income units, capital units etc.

(b) What should be the proportion of investment in fixed interest/dividend securities and variable interest/dividend bearing securities?

(c) In case investments are to be made in the shares or debentures of companies, which particular industries show potential of growth?

(d) Once industries with high growth potential have been identified, the next step is to select the particular companies, in whose shares or securities investments are to be made.

(iii) Timing of purchase: At what price the share is acquired for the portfolio depends entirely on the timing decision. It is obvious if a person wishes to make any gains, he should “buy cheap and sell dear” i.e. buy when the shares are selling at a low price and sell when they are at a high price.

Question 2

(a) What sort of investor normally views the variance (or Standard Deviation) of an individual security’s return as the security’s proper measure of risk?
(b) What sort of investor rationally views the beta of a security as the security’s proper measure of risk? In answering the question, explain the concept of beta.

Answer

(a) A rational risk-averse investor views the variance (or standard deviation) of her portfolio’s return as the proper risk of her portfolio. If for some reason or another the investor can hold only one security, the variance of that security’s return becomes the variance of the portfolio’s return. Hence, the variance of the security’s return is the security’s proper measure of risk.

While risk is broken into diversifiable and non-diversifiable segments, the market generally does not reward for diversifiable risk since the investor himself is expected to diversify the risk himself. However, if the investor does not diversify he cannot be considered to be an efficient investor. The market, therefore, rewards an investor only for the non-diversifiable risk. Hence, the investor needs to know how much non-diversifiable risk he is taking. This is measured in terms of beta.

An investor therefore, views the beta of a security as a proper measure of risk, in evaluating how much the market reward him for the non-diversifiable risk that he is assuming in relation to a security. An investor who is evaluating the non-diversifiable element of risk, that is, extent of deviation of returns viz-a-viz the market therefore consider beta as a proper measure of risk.

(b) If an individual holds a diversified portfolio, she still views the variance (or standard deviation) of her portfolio’s return as the proper measure of the risk of her portfolio. However, she is no longer interested in the variance of each individual security’s return. Rather she is interested in the contribution of each individual security to the variance of the portfolio.

Under the assumption of homogeneous expectations, all individuals hold the market portfolio. Thus, we measure risk as the contribution of an individual security to the variance of the market portfolio. The contribution when standardized properly is the beta of the security. While a very few investors hold the market portfolio exactly, many hold reasonably diversified portfolio. These portfolios are close enough to the market portfolio so that the beta of a security is likely to be a reasonable measure of its risk.

In other words, beta of a stock measures the sensitivity of the stock with reference to a broad based market index like BSE sensex. For example, a beta of 1.3 for a stock would indicate that this stock is 30 per cent riskier than the sensex. Similarly, a beta of 0.8 would indicate that the stock is 20 per cent (100 – 80) less risky than the sensex. However, a beta of one would indicate that the stock is as risky as the stock market index.

Question 3

Distinguish between ‘Systematic risk’ and ‘Unsystematic risk’.
Answer

Systematic risk refers to the variability of return on stocks or portfolio associated with changes in return on the market as a whole. It arises due to risk factors that affect the overall market such as changes in the nations’ economy, tax reform by the Government or a change in the world energy situation. These are risks that affect securities overall and, consequently, cannot be diversified away. This is the risk which is common to an entire class of assets or liabilities. The value of investments may decline over a given time period simply because of economic changes or other events that impact large portions of the market. Asset allocation and diversification can protect against systematic risk because different portions of the market tend to underperform at different times. This is also called market risk.

Unsystematic risk however, refers to risk unique to a particular company or industry. It is avoidable through diversification. This is the risk of price change due to the unique circumstances of a specific security as opposed to the overall market. This risk can be virtually eliminated from a portfolio through diversification.

Question 4

Briefly explain the objectives of “Portfolio Management”.

Answer

Objectives of Portfolio Management

Portfolio management is concerned with efficient management of portfolio investment in financial assets, including shares and debentures of companies. The management may be by professionals or others or by individuals themselves. A portfolio of an individual or a corporate unit is the holding of securities and investment in financial assets. These holdings are the result of individual preferences and decisions regarding risk and return.

The investors would like to have the following objectives of portfolio management:

(a) Capital appreciation.
(b) Safety or security of an investment.
(c) Income by way of dividends and interest.
(d) Marketability.
(e) Liquidity.
(f) Tax Planning - Capital Gains Tax, Income tax and Wealth Tax.
(g) Risk avoidance or minimization of risk.
(h) Diversification, i.e. combining securities in a way which will reduce risk.

It is necessary that all investment proposals should be assessed in terms of income, capital appreciation, liquidity, safety, tax implication, maturity and marketability i.e., saleability (i.e., saleability of securities in the market). The investment strategy should be based on the above
objectives after a thorough study of goals of the investor, market situation, credit policy and economic environment affecting the financial market.

The portfolio management is a complex task. Investment matrix is one of the many approaches which may be used in this connection. The various considerations involved in investment decisions are liquidity, safety and yield of the investment. Image of the organization is also to be taken into account. These considerations may be taken into account and an overall view obtained through a matrix approach by allotting marks for each consideration and totaling them.

Question 5

Discuss the various kinds of Systematic and Unsystematic risk?

Answer

There are two types of Risk - Systematic (or non-diversifiable) and unsystematic (or diversifiable) relevant for investment - also, called as general and specific risk.

Types of Systematic Risk

(i) *Market risk:* Even if the earning power of the corporate sector and the interest rate structure remain more or less unchanged prices of securities, equity shares in particular, tend to fluctuate. Major cause appears to be the changing psychology of the investors. The irrationality in the security markets may cause losses unrelated to the basic risks. These losses are the result of changes in the general tenor of the market and are called market risks.

(ii) *Interest Rate Risk:* The change in the interest rate has a bearing on the welfare of the investors. As the interest rate goes up, the market price of existing fixed income securities falls and vice versa. This happens because the buyer of a fixed income security would not buy it at its par value or face value if its fixed interest rate is lower than the prevailing interest rate on a similar security.

(iii) *Social or Regulatory Risk:* The social or regulatory risk arises, where an otherwise profitable investment is impaired as a result of adverse legislation, harsh regulatory climate, or in extreme instance nationalization by a socialistic government.

(iv) *Purchasing Power Risk:* Inflation or rise in prices lead to rise in costs of production, lower margins, wage rises and profit squeezing etc. The return expected by investors will change due to change in real value of returns.

Classification of Unsystematic Risk

(i) *Business Risk:* As a holder of corporate securities (equity shares or debentures) one is exposed to the risk of poor business performance. This may be caused by a variety of factors like heightenened competition, emergence of new technologies, development of substitute products, shifts in consumer preferences, inadequate supply of essential
Portfolio Theory 7.13

inputs, changes in governmental policies and so on. Often of course the principal factor may be inept and incompetent management.

(ii) Financial Risk: This relates to the method of financing, adopted by the company, high leverage leading to larger debt servicing problem or short term liquidity problems due to bad debts, delayed receivables and fall in current assets or rise in current liabilities.

(iii) Default Risk: Default risk refers to the risk accruing from the fact that a borrower may not pay interest and/or principal on time. Except in the case of highly risky debt instrument, investors seem to be more concerned with the perceived risk of default rather than the actual occurrence of default. Even though the actual default may be highly unlikely, they believe that a change in the perceived default risk of a bond would have an immediate impact on its market price.

Question 6

Discuss the Capital Asset Pricing Model (CAPM) and its relevant assumptions.

Answer

Capital Asset Pricing Model: The mechanical complexity of the Markowitz’s portfolio model kept both practitioners and academics away from adopting the concept for practical use. Its intuitive logic, however, spurred the creativity of a number of researchers who began examining the stock market implications that would arise if all investors used this model. As a result what is referred to as the Capital Asset Pricing Model (CAPM), was developed.

The Capital Asset Pricing Model was developed by Sharpe, Mossin and Linter in 1960. The model explains the relationship between the expected return, non diversifiable risk and the valuation of securities. It considers the required rate of return of a security on the basis of its contribution to the total risk. It is based on the premises that the diversifiable risk of a security is eliminated when more and more securities are added to the portfolio. However, the systematic risk cannot be diversified and is related with that of the market portfolio. All securities do not have same level of systematic risk. The systematic risk can be measured by beta, ß under CAPM, the expected return from a security can be expressed as:

Expected return on security = \(R_t + \text{Beta} \times (R_m - R_f) \)

The model shows that the expected return of a security consists of the risk-free rate of interest and the risk premium. The CAPM, when plotted on the graph paper is known as the Security Market Line (SML). A major implication of CAPM is that not only every security but all portfolios too must plot on SML. This implies that in an efficient market, all securities are expected returns commensurate with their riskiness, measured by ß.

Relevant Assumptions of CAPM

(i) The investor’s objective is to maximize the utility of terminal wealth;

(ii) Investors make choices on the basis of risk and return;
(iii) Investors have identical time horizon;
(iv) Investors have homogeneous expectations of risk and return;
(v) Information is freely and simultaneously available to investors;
(vi) There is risk-free asset, and investor can borrow and lend unlimited amounts at the risk-free rate;
(vii) There are no taxes, transaction costs, restrictions on short rates or other market imperfections;
(viii) Total asset quantity is fixed, and all assets are marketable and divisible.

Thus, CAPM provides a conceptual framework for evaluating any investment decision where capital is committed with a goal of producing future returns. However, there are certain limitations of the theory. Some of these limitations are as follows:

(i) **Reliability of Beta:** Statistically reliable Beta might not exist for shares of many firms. It may not be possible to determine the cost of equity of all firms using CAPM. All shortcomings that apply to Beta value apply to CAPM too.

(ii) **Other Risks:** It emphasis only on systematic risk while unsystematic risks are also important to share holders who do not possess a diversified portfolio.

(iii) **Information Available:** It is extremely difficult to obtain important information on risk-free interest rate and expected return on market portfolio as there are multiple risk-free rates for one while for another, markets being volatile it varies over time period.

Question 7

Discuss the Random Walk Theory.

Answer

Many investment managers and stock market analysts believe that stock market prices can never be predicted because they are not a result of any underlying factors but are mere statistical ups and downs. This hypothesis is known as Random Walk hypothesis which states that the behaviour of stock market prices is unpredictable and that there is no relationship between the present prices of the shares and their future prices. Proponents of this hypothesis argue that stock market prices are independent. A British statistician, M. G. Kendell, found that changes in security prices behave nearly as if they are generated by a suitably designed roulette wheel for which each outcome is statistically independent of the past history. In other words, the fact that there are peaks and troughs in stock exchange prices is a mere statistical happening – successive peaks and troughs are unconnected. In the layman’s language it may be said that prices on the stock exchange behave exactly the way a drunk would behave while walking in a blind lane, i.e., up and down, with an unsteady way going in any direction he likes, bending on the side once and on the other side the second time.
The supporters of this theory put out a simple argument. It follows that:

(a) Prices of shares in stock market can never be predicted. The reason is that the price trends are not the result of any underlying factors, but that they represent a statistical expression of past data.

(c) There may be periodical ups or downs in share prices, but no connection can be established between two successive peaks (high price of stocks) and troughs (low price of stocks).

Question 8

Explain the three form of Efficient Market Hypothesis.

Answer

The EMH theory is concerned with speed with which information effects the prices of securities. As per the study carried out technical analyst it was observed that information is slowly incorporated in the price and it provides an opportunity to earn excess profit. However, once the information is incorporated then investor can not earn this excess profit.

Level of Market Efficiency: That price reflects all available information, the highest order of market efficiency. According to FAMA, there exist three levels of market efficiency:-

(i) *Weak form efficiency* – Price reflect all information found in the record of past prices and volumes.

(ii) *Semi – Strong efficiency* – Price reflect not only all information found in the record of past prices and volumes but also all other publicly available information.

(iii) *Strong form efficiency* – Price reflect all available information public as well as private.

Question 9

Explain the different challenges to Efficient Market Theory.

Answer

Information inadequacy – Information is neither freely available nor rapidly transmitted to all participants in the stock market. There is a calculated attempt by many companies to circulate misinformation. Other challenges are as follows:

(a) **Limited information processing capabilities** – Human information processing capabilities are sharply limited. According to Herbert Simon every human organism lives in an environment which generates millions of new bits of information every second but the bottle necks of the perceptual apparatus does not admit more than thousand bits per seconds and possibly much less.

David Dreman maintained that under conditions of anxiety and uncertainty, with a vast interacting information grid, the market can become a giant.

(b) **Irrational Behaviour** – It is generally believed that investors’ rationality will ensure a close correspondence between market prices and intrinsic values. But in practice this is not true. J. M. Keynes argued that all sorts of consideration enter into the market valuation which is in no way relevant to the prospective yield. This was confirmed by L. C. Gupta who found that the market evaluation processes work haphazardly almost like a blind man firing a gun. The market seems to function largely on hit or miss tactics rather than on the basis of informed beliefs about the long term prospects of individual enterprises.

c) **Monopolistic Influence** – A market is regarded as highly competitive. No single buyer or seller is supposed to have undue influence over prices. In practice, powerful institutions and big operators wield great influence over the market. The monopolistic power enjoyed by them diminishes the competitiveness of the market.

Question 10

Please provide the question text.

Answer

The risk from Government policy to securities can be impacted by any of the following factors.

(i) Licensing Policy
(ii) Restrictions on commodity and stock trading in exchanges
(iii) Changes in FDI and FII rules.
(iv) Export and import restrictions
(v) Restrictions on shareholding in different industry sectors
(vi) Changes in tax laws and corporate and Securities laws.

Question 11

A stock costing `120 pays no dividends. The possible prices that the stock might sell for at the end of the year with the respective probabilities are:

<table>
<thead>
<tr>
<th>Price</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>0.1</td>
</tr>
<tr>
<td>120</td>
<td>0.1</td>
</tr>
<tr>
<td>125</td>
<td>0.2</td>
</tr>
<tr>
<td>130</td>
<td>0.3</td>
</tr>
<tr>
<td>135</td>
<td>0.2</td>
</tr>
<tr>
<td>140</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Required:

(i) Calculate the expected return.

(ii) Calculate the Standard deviation of returns.
Answer

Here, the probable returns have to be calculated using the formula

\[R = \frac{D}{P_0} + \frac{P_1 - P_0}{P_0} \]

Calculation of Probable Returns

<table>
<thead>
<tr>
<th>Possible prices (P₁)</th>
<th>P₁-P₀</th>
<th>[(P₁-P₀)/ P₀] x 100 Return (per cent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>₹ 115</td>
<td>-5</td>
<td>-4.17</td>
</tr>
<tr>
<td>₹ 120</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>₹ 125</td>
<td>5</td>
<td>4.17</td>
</tr>
<tr>
<td>₹ 130</td>
<td>10</td>
<td>8.33</td>
</tr>
<tr>
<td>₹ 135</td>
<td>15</td>
<td>12.50</td>
</tr>
<tr>
<td>₹ 140</td>
<td>20</td>
<td>16.67</td>
</tr>
</tbody>
</table>

Alternatively, it can be calculated as follows:

Calculation of Expected Returns

<table>
<thead>
<tr>
<th>Possible return Xᵢ</th>
<th>Probability p(Xᵢ)</th>
<th>Product Xᵢp(Xᵢ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.17</td>
<td>0.1</td>
<td>-0.417</td>
</tr>
<tr>
<td>0.00</td>
<td>0.1</td>
<td>0.000</td>
</tr>
<tr>
<td>4.17</td>
<td>0.2</td>
<td>0.834</td>
</tr>
<tr>
<td>8.33</td>
<td>0.3</td>
<td>2.499</td>
</tr>
<tr>
<td>12.50</td>
<td>0.2</td>
<td>2.500</td>
</tr>
<tr>
<td>16.67</td>
<td>0.1</td>
<td>1.667</td>
</tr>
</tbody>
</table>

\[X = 7.083 \]

Expected return \(X = 7.083 \) per

Alternatively, it can also be calculated as follows:

Expected Price = \(115 \times 0.1 + 120 \times 0.1 + 125 \times 0.2 + 130 \times 0.3 + 135 \times 0.2 + 140 \times 0.1 = 128.50 \)

Return = \(\frac{128.50 - 120}{120} \times 100 = 7.0833\% \)
Calculation of Standard Deviation of Returns

<table>
<thead>
<tr>
<th>Probable return (X_i)</th>
<th>Probability (p(X_i))</th>
<th>Deviation ((X_i - X))</th>
<th>Deviation squared ((X_i - X)^2)</th>
<th>Product ((X_i - X)^2 p(X_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.17</td>
<td>0.1</td>
<td>-11.253</td>
<td>126.63</td>
<td>12.66</td>
</tr>
<tr>
<td>0.00</td>
<td>0.1</td>
<td>-7.083</td>
<td>50.17</td>
<td>5.017</td>
</tr>
<tr>
<td>4.17</td>
<td>0.2</td>
<td>-2.913</td>
<td>8.49</td>
<td>1.698</td>
</tr>
<tr>
<td>8.33</td>
<td>0.3</td>
<td>1.247</td>
<td>1.56</td>
<td>0.467</td>
</tr>
<tr>
<td>12.50</td>
<td>0.2</td>
<td>5.417</td>
<td>29.34</td>
<td>5.869</td>
</tr>
<tr>
<td>16.67</td>
<td>0.1</td>
<td>9.587</td>
<td>91.91</td>
<td>9.191</td>
</tr>
</tbody>
</table>

\[\sigma^2 = 34.902 \]

Variance, \(\sigma^2 = 34.902 \) per cent

Standard deviation, \(\sigma = \sqrt{34.902} = 5.908 \) per cent

Question 12

Following information is available in respect of expected dividend, market price and market condition after one year.

<table>
<thead>
<tr>
<th>Market Condition</th>
<th>Probability</th>
<th>Market Price</th>
<th>Dividend per share</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>0.25</td>
<td>115</td>
<td>9</td>
</tr>
<tr>
<td>Normal</td>
<td>0.50</td>
<td>107</td>
<td>5</td>
</tr>
<tr>
<td>Bad</td>
<td>0.25</td>
<td>97</td>
<td>3</td>
</tr>
</tbody>
</table>

The existing market price of an equity share is ₹ 106 (F.V. ₹ 1), which is cum 10% bonus debenture of ₹ 6 each, per share. M/s. X Finance Company Ltd. had offered the buy-back of debentures at face value.

Find out the expected return and variability of returns of the equity shares.

And also advise-Whether to accept buy back after?

Answer

The Expected Return of the equity share may be found as follows:

<table>
<thead>
<tr>
<th>Market Condition</th>
<th>Probability</th>
<th>Total Return</th>
<th>Cost (*)</th>
<th>Net Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good</td>
<td>0.25</td>
<td>₹ 124</td>
<td>₹ 100</td>
<td>₹ 24</td>
</tr>
<tr>
<td>Normal</td>
<td>0.50</td>
<td>₹ 112</td>
<td>₹ 100</td>
<td>₹ 12</td>
</tr>
<tr>
<td>Bad</td>
<td>0.25</td>
<td>₹ 100</td>
<td>₹ 100</td>
<td>₹ 0</td>
</tr>
</tbody>
</table>
Expected Return =
\[
(24 \times 0.25) + (12 \times 0.50) + (0 \times 0.25) = 12 = \left(\frac{12}{100}\right) \times 100 = 12\%
\]

The variability of return can be calculated in terms of standard deviation.

\[
\text{V SD} = 0.25 (24 - 12)^2 + 0.50 (12 - 12)^2 + 0.25 (0 - 12)^2
\]
\[
= 0.25 (12)^2 + 0.50 (0)^2 + 0.25 (-12)^2
\]
\[
= 36 + 0 + 36
\]
\[
\text{SD} = \sqrt{72} = 8.485 \text{ or say } 8.49
\]

(*) The present market price of the share is ₹ 106 cum bonus 10% debenture of ₹ 6 each; hence the net cost is ₹ 100 (There is no cash loss or any waiting for refund of debenture amount).

M/s X Finance company has offered the buyback of debenture at face value. There is reasonable 10% rate of interest compared to expected return 12% from the market. Considering the dividend rate and market price the creditworthiness of the company seems to be very good. The decision regarding buy-back should be taken considering the maturity period and opportunity in the market. Normally, if the maturity period is low say up to 1 year better to wait otherwise to opt buy back option.

Question 13

Mr. A is interested to invest ₹ 1,00,000 in the securities market. He selected two securities B and D for this purpose. The risk return profile of these securities are as follows:

<table>
<thead>
<tr>
<th>Security</th>
<th>Risk ((\sigma))</th>
<th>Expected Return (ER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>10%</td>
<td>12%</td>
</tr>
<tr>
<td>D</td>
<td>18%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Co-efficient of correlation between B and D is 0.15.

You are required to calculate the portfolio return of the following portfolios of B and D to be considered by A for his investment.

(i) 100 percent investment in B only;
(ii) 50 percent of the fund in B and the rest 50 percent in D;
(iii) 75 percent of the fund in B and the rest 25 percent in D; and
(iv) 100 percent investment in D only.

Also indicate that which portfolio is best for him from risk as well as return point of view?
Answer

We have \(E_p = W_1E_1 + W_2E_2 + \ldots + W_nE_n \)

and for standard deviation \(\sigma^2_p = \sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j \sigma_{ij} \)

\[
\sigma^2_p = \sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j \rho_{ij} \sigma_i \sigma_j
\]

Two asset portfolio

\(\sigma^2_p = w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2w_1w_2 \rho_{12} \sigma_1 \sigma_2 \)

Substituting the respective values we get,

(i) All funds invested in B

\(E_p = 12\% \)
\(\sigma_p = 10\% \)

(ii) 50% of funds in each of B & D

\(E_p = 0.50 \times 12\% + 0.50 \times 20\% = 16\% \)
\(\sigma^2_p = (0.50)^2(10\%)^2 + (0.50)^2(18\%)^2 + 2(0.50)(0.50)(0.15)(10\%)(18\%) \)
\(\sigma^2_p = 25 + 81 + 13.5 = 119.50 \)
\(\sigma_p = 10.93\% \)

(iii) 75% in B and 25% in D

\(E_p = 0.75 \times 12\% + 0.25 \times 20\% = 14\% \)
\(\sigma^2_p = (0.75)^2(10\%)^2 + (0.25)^2(18\%)^2 + 2(0.75)(0.25)(0.15)(10\%)(18\%) \)
\(\sigma^2_p = 56.25 + 20.25 + 10.125 = 86.625 \)
\(\sigma_p = 9.31\% \)

(iv) All funds in D

\(E_p = 20\% \)
\(\sigma_p = 18.0\% \)

<table>
<thead>
<tr>
<th>Portfolio</th>
<th>(i)</th>
<th>(ii)</th>
<th>(iii)</th>
<th>(iv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return</td>
<td>12</td>
<td>16</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>10</td>
<td>10.93</td>
<td>9.31</td>
<td>18</td>
</tr>
</tbody>
</table>

© The Institute of Chartered Accountants of India
In the terms of return, we see that portfolio (iv) is the best portfolio. In terms of risk we see that portfolio (iii) is the best portfolio.

Question 14

Consider the following information on two stocks, A and B:

<table>
<thead>
<tr>
<th>Year</th>
<th>Return on A (%)</th>
<th>Return on B (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>2007</td>
<td>16</td>
<td>18</td>
</tr>
</tbody>
</table>

You are required to determine:

(i) The expected return on a portfolio containing A and B in the proportion of 40% and 60% respectively.

(ii) The Standard Deviation of return from each of the two stocks.

(iii) The covariance of returns from the two stocks.

(iv) Correlation coefficient between the returns of the two stocks.

(v) The risk of a portfolio containing A and B in the proportion of 40% and 60%.

Answer

(i) Expected return of the portfolio A and B

\[E(\text{A}) = \frac{10 + 16}{2} = 13\% \]

\[E(\text{B}) = \frac{12 + 18}{2} = 15\% \]

\[R_p = \sum_{i=1}^{N} X_i R_i = 0.4(13) + 0.6(15) = 14.2\% \]

(ii) Stock A:

Variance = 0.5 (10 – 13)² + 0.5 (16 – 13)² = 9

Standard deviation = \(\sqrt{9} = 3\% \)

Stock B:

Variance = 0.5 (12 – 15)² + 0.5 (18 – 15)² = 9

Standard deviation = 3%

(iii) Covariance of stocks A and B

\[\text{Cov}_{AB} = 0.5 (10 – 13)(12 – 15) + 0.5 (16 – 13)(18 – 15) = 9 \]

(iv) Correlation coefficient

\[r_{AB} = \frac{\text{Cov}_{AB}}{\sigma_A \sigma_B} = \frac{9}{3 \times 3} = 1 \]
Question 15

Consider the following information on two stocks X and Y:

<table>
<thead>
<tr>
<th>Year</th>
<th>Return on X (%)</th>
<th>Return on Y (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>2009</td>
<td>18</td>
<td>16</td>
</tr>
</tbody>
</table>

You are required to determine:

(i) The expected return on a portfolio containing X and Y in the proportion of 60% and 40% respectively.

(ii) The standard deviation of return from each of the two stocks.

(iii) The covariance of returns from the two stocks.

(iv) Correlation co-efficient between the returns of the two stocks.

(v) The risk of portfolio containing X and Y in the proportion of 60% and 40%.

Answer

(i) Expected return of the portfolio X and Y

E(X) = (12 + 18)/2 = 15%
E(Y) = (10 + 16)/2 = 13%

R_P = 0.6(15) + 0.4(13) = 14.2%

(ii) Stock X

Variance = \[\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{N} \]

Variance = 0.5(12 – 15)^2 + 0.5(18 – 15)^2 = 9

Standard deviation = \(\sqrt{9} = 3\%

Stock Y
Portfolio Theory 7.23

\[\text{Variance} = \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}{N} \]

Variance = 0.5(10 – 13)^2 + 0.5(16 – 13)^2 = 9

Standard deviation = \(\sqrt{9} = 3\%\)

(iii) Covariance of Stocks X and Y

\[\text{Covariance} = \frac{\sum_{t=1}^{n} (X_t - \bar{X})(Y_t - \bar{Y})}{N} \]

\[\text{Cov}_{XY} = 0.5(12 – 15)(10 – 13) + 0.5(18 – 15)(16 – 13) = 9 \]

(iv) Correlation of Coefficient

\[\gamma_{xy} = \frac{\text{Cov}_{xy}}{\sigma_x \sigma_y} = \frac{9}{3 \times 3} = 1 \]

(v) Portfolio Risk

\[\sigma_P = \sqrt{(0.6)^2(3)^2 + (0.4)^2(3)^2 + 2(0.6)(0.4)(3)(3)(1)} \]

\[= \sqrt{3.24 + 1.44 + 4.32} = \sqrt{9} = 3\% \]

Question 16

Following is the data regarding six securities:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return (%)</td>
<td>8</td>
<td>8</td>
<td>12</td>
<td>4</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>Risk (Standard deviation)</td>
<td>4</td>
<td>5</td>
<td>12</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

(i) Assuming three will have to be selected, state which ones will be picked.

(ii) Assuming perfect correlation, show whether it is preferable to invest 75% in A and 25% in C or to invest 100% in E

Answer

(i) Security A has a return of 8% for a risk of 4, whereas B and F have a higher risk for the same return. Hence, among them A dominates.

For the same degree of risk 4, security D has only a return of 4%. Hence, D is also dominated by A.

Securities C and E remain in reckoning as they have a higher return though with higher
degree of risk.
Hence, the ones to be selected are A, C & E.

(ii) The average values for A and C for a proportion of 3:1 will be:

Risk $= \frac{(3 \times 4) + (1 \times 12)}{4} = 6\%$

Return $= \frac{(3 \times 8) + (1 \times 12)}{4} = 9\%$

Therefore:
\begin{align*}
75\% & \quad A \\
25\% & \quad C \\
E
\end{align*}

Risk
\begin{align*}
6 \\
5
\end{align*}

Return
\begin{align*}
9\% \\
9\%
\end{align*}

For the same 9\% return the risk is lower in E. Hence, E will be preferable.

Question 17

The historical rates of return of two securities over the past ten years are given. Calculate the Covariance and the Correlation coefficient of the two securities:

<table>
<thead>
<tr>
<th>Years:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security 1:</td>
<td>12</td>
<td>8</td>
<td>7</td>
<td>14</td>
<td>16</td>
<td>15</td>
<td>18</td>
<td>20</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>(Return per cent)</td>
<td></td>
</tr>
<tr>
<td>Security 2:</td>
<td>20</td>
<td>22</td>
<td>24</td>
<td>18</td>
<td>15</td>
<td>20</td>
<td>24</td>
<td>25</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>(Return per cent)</td>
<td></td>
</tr>
</tbody>
</table>

Answer

Calculation of Covariance

<table>
<thead>
<tr>
<th>Year</th>
<th>R_1</th>
<th>Deviation</th>
<th>Deviation 2</th>
<th>R_2</th>
<th>Deviation</th>
<th>Deviation 2</th>
<th>$\text{Product of deviations}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>-2.8</td>
<td>7.84</td>
<td>20</td>
<td>-1</td>
<td>1</td>
<td>2.8</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>-6.8</td>
<td>46.24</td>
<td>22</td>
<td>1</td>
<td>1</td>
<td>-6.8</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>-7.8</td>
<td>60.84</td>
<td>24</td>
<td>3</td>
<td>9</td>
<td>-23.4</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>-0.8</td>
<td>0.64</td>
<td>18</td>
<td>-3</td>
<td>9</td>
<td>2.4</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>1.2</td>
<td>1.44</td>
<td>15</td>
<td>-6</td>
<td>36</td>
<td>-7.2</td>
</tr>
</tbody>
</table>

© The Institute of Chartered Accountants of India
Covariance \[\sigma_{1} = \frac{\sum_{i=1}^{N} (R_{1i} - \bar{R}_{1})(R_{2i} - \bar{R}_{2})}{N} = -8/10 = -0.8 \]

Standard Deviation of Security 1

\[\sigma_{1} = \sqrt{\frac{(\bar{R}_{1} - \bar{R}_{1})^2}{N}} \]

\[\sigma_{1} = \sqrt{\frac{207.60}{10}} = \sqrt{20.76} \]

\[\sigma_{1} = 4.56 \]

Standard Deviation of Security 2

\[\sigma_{2} = \sqrt{\frac{(\bar{R}_{2} - \bar{R}_{2})^2}{N}} \]

\[\sigma_{2} = \sqrt{\frac{84}{10}} = \sqrt{8.40} \]

\[\sigma_{2} = 2.90 \]

Alternatively, Standard Deviation of securities can also be calculated as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>R_1</th>
<th>R_1^2</th>
<th>R_2</th>
<th>R_2^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>144</td>
<td>20</td>
<td>400</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>64</td>
<td>22</td>
<td>484</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>49</td>
<td>24</td>
<td>576</td>
</tr>
</tbody>
</table>
Standard deviation of security 1:

\[
\sigma_1 = \sqrt{\frac{\sum R_1^2 - (\sum R_1)^2}{N^2}}
\]

\[
= \sqrt{\frac{(10 \times 2398) - (148)^2}{10 \times 10}} = \sqrt{23980 - 21904}
\]

\[
= \sqrt{2076} = 4.56
\]

Standard deviation of security 2:

\[
\sigma_2 = \sqrt{\frac{\sum R_2^2 - (\sum R_2)^2}{N^2}}
\]

\[
= \sqrt{\frac{(10 \times 4494) - (210)^2}{10 \times 10}} = \sqrt{44940 - 44100}
\]

\[
= \sqrt{840} = 2.90
\]

Correlation Coefficient

\[
r_{12} = \frac{\text{Cov}(R_1, R_2)}{\sigma_1 \sigma_2} = \frac{-0.8}{4.56 \times 2.90} = \frac{-0.8}{13.22} = -0.0605
\]

Question 18

An investor has decided to invest ₹ 1,00,000 in the shares of two companies, namely, ABC and XYZ. The projections of returns from the shares of the two companies along with their probabilities are as follows:
You are required to

(i) Comment on return and risk of investment in individual shares.

(ii) Compare the risk and return of these two shares with a Portfolio of these shares in equal proportions.

(iii) Find out the proportion of each of the above shares to formulate a minimum risk portfolio.

Answer

(i)

<table>
<thead>
<tr>
<th>Probability</th>
<th>ABC (%)</th>
<th>XYZ (%)</th>
<th>1X2 (%)</th>
<th>1X3 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>0.20</td>
<td>12</td>
<td>16</td>
<td>2.40</td>
<td>3.2</td>
</tr>
<tr>
<td>0.25</td>
<td>14</td>
<td>10</td>
<td>3.50</td>
<td>2.5</td>
</tr>
<tr>
<td>0.25</td>
<td>-7</td>
<td>28</td>
<td>-1.75</td>
<td>7.0</td>
</tr>
<tr>
<td>0.30</td>
<td>28</td>
<td>-2</td>
<td>8.40</td>
<td>-0.6</td>
</tr>
</tbody>
</table>

Average return

Hence the expected return from ABC = 12.55% and XYZ is 12.1%

<table>
<thead>
<tr>
<th>Probability</th>
<th>(ABC-ABC)</th>
<th>(ABC-ABC)^2</th>
<th>1X3</th>
<th>(XYZ-XYZ)</th>
<th>(XYZ-XYZ)^2</th>
<th>(1)X(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td>-0.55</td>
<td>0.3025</td>
<td>0.06</td>
<td>3.9</td>
<td>15.21</td>
<td>3.04</td>
</tr>
<tr>
<td>0.25</td>
<td>1.45</td>
<td>2.1025</td>
<td>0.53</td>
<td>-2.1</td>
<td>4.41</td>
<td>1.10</td>
</tr>
<tr>
<td>0.25</td>
<td>-19.55</td>
<td>382.2025</td>
<td>95.55</td>
<td>15.9</td>
<td>252.81</td>
<td>63.20</td>
</tr>
<tr>
<td>0.30</td>
<td>15.45</td>
<td>238.7025</td>
<td>71.61</td>
<td>-14.1</td>
<td>198.81</td>
<td>59.64</td>
</tr>
</tbody>
</table>

\[\sigma^2_{ABC} = 167.75(\%)^2 ; \sigma_{ABC} = 12.95\% \]

\[\sigma^2_{XYZ} = 126.98(\%)^2 ; \sigma_{XYZ} = 11.27\% \]

© The Institute of Chartered Accountants of India
(ii) In order to find risk of portfolio of two shares, the covariance between the two is necessary here.

<table>
<thead>
<tr>
<th>Probability</th>
<th>(ABC- ABC)</th>
<th>(XYZ- XYZ)</th>
<th>2X3</th>
<th>1X4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>0.20</td>
<td>-0.55</td>
<td>3.9</td>
<td>-2.145</td>
<td>-0.429</td>
</tr>
<tr>
<td>0.25</td>
<td>1.45</td>
<td>-2.1</td>
<td>-3.045</td>
<td>-0.761</td>
</tr>
<tr>
<td>0.25</td>
<td>-19.55</td>
<td>15.9</td>
<td>-310.845</td>
<td>-77.71</td>
</tr>
<tr>
<td>0.30</td>
<td>15.45</td>
<td>-14.1</td>
<td>-217.845</td>
<td>-65.35</td>
</tr>
</tbody>
</table>

\[\sigma^2_P = (0.5^2 \times 167.75) + (0.5^2 \times 126.98) + 2 \times (-144.25) \times 0.5 \times 0.5 \]
\[\sigma^2_P = 41.9375 + 31.745 - 72.125 \]
\[\sigma^2_P = 1.5575 \text{ or } 1.56\% \]
\[\sigma_P = \sqrt{1.56} = 1.25\% \]

\[E(R_p) = (0.5 \times 12.55) + (0.5 \times 12.1) = 12.325\% \]

Hence, the return is 12.325\% with the risk of 1.25\% for the portfolio. Thus the portfolio results in the reduction of risk by the combination of two shares.

(iii) For constructing the minimum risk portfolio the condition to be satisfied is

\[X_{ABC} = \frac{\sigma^2_X - r_{AX} \sigma_A \sigma_X}{\sigma^2_A + \sigma^2_X - 2r_{AX} \sigma_A \sigma_X} \quad \text{or} \quad \frac{\sigma^2_X - \text{Cov}_{AX}}{\sigma^2_A + \sigma^2_X - 2 \text{Cov}_{AX}} \]

\[\sigma_X = \text{Std. Deviation of XYZ} \]
\[\sigma_A = \text{Std. Deviation of ABC} \]
\[r_{AX} = \text{Coefficient of Correlation between XYZ and ABC} \]
\[\text{Cov}_{AX} = \text{Covariance between XYZ and ABC}. \]

Therefore,

\[\% \ ABC = \frac{126.98 - (-144.25)}{126.98 + 167.75 - [2 \times (-144.25)]} = \frac{271.23}{583.23} = 0.46 \text{ or } 46\% \]

\[\% \ ABC = 46\%, \ XYZ = 54\% \]

\[(1 - 0.46) = 0.54 \]
Question 19

The distribution of return of security ‘F’ and the market portfolio ‘P’ is given below:

<table>
<thead>
<tr>
<th>Probability</th>
<th>Return %</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>P</td>
</tr>
<tr>
<td>0.30</td>
<td>30</td>
</tr>
<tr>
<td>0.40</td>
<td>20</td>
</tr>
<tr>
<td>0.30</td>
<td>0</td>
</tr>
</tbody>
</table>

You are required to calculate the expected return of security ‘F’ and the market portfolio ‘P’, the covariance between the market portfolio and security and beta for the security.

Answer

Security F

<table>
<thead>
<tr>
<th>Prob(P)</th>
<th>R_f</th>
<th>P x R_f</th>
<th>Deviations of F</th>
<th>(Deviation)^2 of F</th>
<th>(Deviations)^2 P_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>30</td>
<td>9</td>
<td>13</td>
<td>169</td>
<td>50.7</td>
</tr>
<tr>
<td>0.4</td>
<td>20</td>
<td>8</td>
<td>3</td>
<td>9</td>
<td>3.6</td>
</tr>
<tr>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>-17</td>
<td>289</td>
<td>86.7</td>
</tr>
</tbody>
</table>

STDEV $\sigma_F = \sqrt{141} = 11.87$

Market Portfolio, P

<table>
<thead>
<tr>
<th>R_M</th>
<th>P_M</th>
<th>Exp. Return</th>
<th>Dev. of P</th>
<th>(Dev. of P)^2</th>
<th>(Deviation of F) x (Deviation of P)</th>
<th>Dev. of F x Dev. of P</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10</td>
<td>0.3</td>
<td>-3</td>
<td>-24</td>
<td>576</td>
<td>-312</td>
<td>-93.6</td>
</tr>
<tr>
<td>20</td>
<td>0.4</td>
<td>8</td>
<td>6</td>
<td>36</td>
<td>14.4</td>
<td>18</td>
</tr>
<tr>
<td>30</td>
<td>0.3</td>
<td>9</td>
<td>16</td>
<td>256</td>
<td>76.8</td>
<td>-272</td>
</tr>
</tbody>
</table>

$\sigma_M = 16$,
$\sigma_M = 16.25$
Beta = \frac{\text{Cov} \times P_m}{\sigma_m^2} = \frac{-168}{264} = -0.636

Question 20

Given below is information of market rates of Returns and Data from two Companies A and B:

<table>
<thead>
<tr>
<th>Year</th>
<th>Market (%)</th>
<th>Company A (%)</th>
<th>Company B (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>12.0</td>
<td>13.0</td>
<td>11.0</td>
</tr>
<tr>
<td>2008</td>
<td>11.0</td>
<td>11.5</td>
<td>10.5</td>
</tr>
<tr>
<td>2009</td>
<td>9.0</td>
<td>9.8</td>
<td>9.5</td>
</tr>
</tbody>
</table>

You are required to determine the beta coefficients of the Shares of Company A and Company B.

Answer

Company A:

<table>
<thead>
<tr>
<th>Year</th>
<th>Return % (Ra)</th>
<th>Market return % (Rm)</th>
<th>Deviation R(a)</th>
<th>Deviation Rm</th>
<th>D Ra × DRm</th>
<th>Rm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.0</td>
<td>12.0</td>
<td>1.57</td>
<td>1.33</td>
<td>2.09</td>
<td>1.77</td>
</tr>
<tr>
<td>2</td>
<td>11.5</td>
<td>11.0</td>
<td>0.07</td>
<td>0.33</td>
<td>0.02</td>
<td>0.11</td>
</tr>
<tr>
<td>3</td>
<td>9.8</td>
<td>9.0</td>
<td>-1.63</td>
<td>-1.67</td>
<td>2.72</td>
<td>2.79</td>
</tr>
<tr>
<td></td>
<td>34.3</td>
<td>32.0</td>
<td></td>
<td></td>
<td>4.83</td>
<td>4.67</td>
</tr>
</tbody>
</table>

Average Ra = 11.43

Average Rm = 10.67

Covariance = \frac{\sum (R_m - \bar{R_m})(R_a - \bar{R_a})}{N}

Covariance = \frac{4.83}{3} = 1.61

Variance (\sigma_m^2) = \frac{\sum (R_m - \bar{R_m})^2}{N}

= \frac{4.67}{3} = 1.557

\beta = \frac{1.61}{1.557} = 1.03
Company B:

<table>
<thead>
<tr>
<th>Year</th>
<th>Return % (Rb)</th>
<th>Market return % (Rm)</th>
<th>Deviation R(b)</th>
<th>Deviation Rm</th>
<th>D Rb × D Rm</th>
<th>Rm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.0</td>
<td>12.0</td>
<td>0.67</td>
<td>1.33</td>
<td>0.89</td>
<td>1.77</td>
</tr>
<tr>
<td>2</td>
<td>10.5</td>
<td>11.0</td>
<td>0.17</td>
<td>0.33</td>
<td>0.06</td>
<td>0.11</td>
</tr>
<tr>
<td>3</td>
<td>9.5</td>
<td>9.0</td>
<td>−0.83</td>
<td>−1.67</td>
<td>1.39</td>
<td>2.79</td>
</tr>
<tr>
<td>4</td>
<td>31.0</td>
<td>32.0</td>
<td></td>
<td></td>
<td>2.34</td>
<td>4.67</td>
</tr>
</tbody>
</table>

Average Rb = 10.33
Average Rm = 10.67

Covariance = \[\frac{\sum (R_m - \overline{R_m})(R_b - \overline{R_b})}{N} \]

Covariance = \[\frac{2.34}{3} = 0.78 \]

Variance \((\sigma_m)^2\) = \[\frac{\sum (R_m - \overline{R_m})^2}{N} \]

\[= \frac{4.67}{3} = 1.557 \]

\[\beta = \frac{0.78}{1.557} = 0.50 \]

Question 21

The returns on stock A and market portfolio for a period of 6 years are as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>Return on A (%)</th>
<th>Return on market portfolio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>-4</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>9.5</td>
</tr>
<tr>
<td>6</td>
<td>-12</td>
<td>-2</td>
</tr>
</tbody>
</table>

You are required to determine:

(i) Characteristic line for stock A
(ii) The systematic and unsystematic risk of stock A.

Answer

Characteristic line is given by

\[\alpha + \beta R_m \]

\[\beta_i = \frac{\sum xy - n \bar{x} \bar{y}}{\sum x^2 - n(\bar{x})^2} \]

\[\alpha_i = \bar{y} - \beta \bar{x} \]

<table>
<thead>
<tr>
<th>Return on A (Y)</th>
<th>Return on market (X)</th>
<th>xy</th>
<th>x²</th>
<th>(x-(\bar{x}))</th>
<th>(x-(\bar{x}))^2</th>
<th>(y-(\bar{y}))</th>
<th>(y-(\bar{y}))^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>8</td>
<td>96</td>
<td>64</td>
<td>2.25</td>
<td>5.06</td>
<td>5.67</td>
<td>32.15</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>180</td>
<td>144</td>
<td>6.25</td>
<td>39.06</td>
<td>8.67</td>
<td>75.17</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>121</td>
<td>121</td>
<td>5.25</td>
<td>27.56</td>
<td>4.67</td>
<td>21.81</td>
</tr>
<tr>
<td>2</td>
<td>-4</td>
<td>-8</td>
<td>16</td>
<td>-9.75</td>
<td>95.06</td>
<td>-4.33</td>
<td>18.75</td>
</tr>
<tr>
<td>10</td>
<td>9.5</td>
<td>95</td>
<td>90.25</td>
<td>3.75</td>
<td>14.06</td>
<td>3.67</td>
<td>13.47</td>
</tr>
<tr>
<td>-12</td>
<td>-2</td>
<td>24</td>
<td>4</td>
<td>-7.75</td>
<td>60.06</td>
<td>-18.33</td>
<td>335.99</td>
</tr>
<tr>
<td>38</td>
<td>34.5</td>
<td>508</td>
<td>439.25</td>
<td>240.86</td>
<td>497.34</td>
<td>1.202</td>
<td></td>
</tr>
</tbody>
</table>

\[\bar{y} = \frac{38}{6} = 6.33 \]

\[\bar{x} = \frac{34.5}{6} = 5.75 \]

\[\beta = \frac{\sum xy - n \bar{x} \bar{y}}{\sum x^2 - n(\bar{x})^2} = \frac{508 - 6(5.75)(6.33)}{439.25 - 6(5.75)^2} = \frac{508 - 218.385}{439.25 - 198.375} = \frac{289.615}{240.875} = 1.202 \]

\[\alpha = \bar{y} - \beta \bar{x} = 6.33 - 1.202(5.75) = -0.58 \]

Hence the characteristic line is \(-0.58 + 1.202 (R_m)\)

Total Risk of Market = \(\sigma_m = \frac{\sum (x-\bar{x})^2}{n} = \frac{240.86}{6} = 40.14(%) \)
Total Risk of Stock = \(\frac{497.34}{6} = 82.89 \) (%)

Systematic Risk = \(\beta_i^2 \sigma_i = (1.202)^2 \times 40.14 = 57.99 \) (%)

Unsystematic Risk is = Total Risk – Systematic Risk
= 82.89 - 57.99 = 24.90 (%)

Question 22

The rates of return on the security of Company X and market portfolio for 10 periods are given below:

<table>
<thead>
<tr>
<th>Period</th>
<th>Return of Security X (%)</th>
<th>Return on Market Portfolio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>-5</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
<td>-6</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>-7</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>11</td>
</tr>
</tbody>
</table>

(i) What is the beta of Security X?

(ii) What is the characteristic line for Security X?

Answer

(i)
Strategic Financial Management

<table>
<thead>
<tr>
<th>Period</th>
<th>X</th>
<th>Y</th>
<th>Y²</th>
<th>XY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>22</td>
<td>484</td>
<td>440</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>20</td>
<td>400</td>
<td>440</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>18</td>
<td>324</td>
<td>450</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>16</td>
<td>256</td>
<td>336</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>20</td>
<td>400</td>
<td>360</td>
</tr>
<tr>
<td>6</td>
<td>-5</td>
<td>8</td>
<td>64</td>
<td>-40</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
<td>-6</td>
<td>36</td>
<td>-102</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
<td>5</td>
<td>25</td>
<td>95</td>
</tr>
<tr>
<td>9</td>
<td>-7</td>
<td>6</td>
<td>36</td>
<td>-42</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>11</td>
<td>121</td>
<td>220</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c|c|c|c|c|c}
\text{Period} & \text{X} & \text{Y} & \text{Y}^2 & \text{XY} \\
\hline
1 & 20 & 22 & 484 & 440 \\
2 & 22 & 20 & 400 & 440 \\
3 & 25 & 18 & 324 & 450 \\
4 & 21 & 16 & 256 & 336 \\
5 & 18 & 20 & 400 & 360 \\
6 & -5 & 8 & 64 & -40 \\
7 & 17 & -6 & 36 & -102 \\
8 & 19 & 5 & 25 & 95 \\
9 & -7 & 6 & 36 & -42 \\
10 & 20 & 11 & 121 & 220 \\
\end{array}
\]

\[\bar{X} = 15 \quad \bar{Y} = 12\]

\[\Sigma \text{XY} - n \bar{X} \bar{Y} = \frac{\Sigma \text{X} \text{Y} - n \bar{X} \bar{Y}}{\Sigma \text{X}^2 - n(\bar{X})^2}\]

\[\Sigma \text{XY} = 2146 \quad \Sigma \text{X}^2 = 2157\]

\[\text{Beta}_x = \frac{\text{Cov}_{x,Y}}{\sigma_x^2} = \frac{35.70}{70.60} = 0.505\]
(ii) \(R_X = 15 \quad R_M = 12 \)

\[
y = \alpha + \beta x
\]

\[
15 = \alpha + 0.505 \times 12
\]

\[
\text{Alpha (}\alpha\text{)} = 15 - (0.505 \times 12) = 8.94\%
\]

Characteristic line for security \(X = \alpha + \beta \times R_M \)

Where, \(R_M = \text{Expected return on Market Index} \)

\[
\therefore \text{Characteristic line for security } X = 8.94 + 0.505 R_M
\]

Question 23

Following is the data regarding six securities:

<table>
<thead>
<tr>
<th></th>
<th>U</th>
<th>V</th>
<th>W</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return (%)</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>5</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Risk (%) (Standard deviation)</td>
<td>5</td>
<td>6</td>
<td>13</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

(i) Which of three securities will be selected?

(ii) Assuming perfect correlation, analyse whether it is preferable to invest 80% in security \(U \) and 20% in security \(W \) or to invest 100% in \(Y \).

Answer

(i) When we make risk-return analysis of different securities from \(U \) to \(Z \), we can observe that security \(U \) gives a return of 10% at risk level of 5%. Simultaneously securities \(V \) and \(Z \) give the same return of 10% as of security \(U \), but their risk levels are 6% and 7% respectively. Security \(X \) is giving only 5% return for the risk rate of 5%. Hence, security \(U \) dominates securities \(V, X \) and \(Z \).

Securities \(W \) and \(Y \) offer more return but it carries higher level of risk.

Hence securities \(U, W \) and \(Y \) can be selected based on individual preferences.

(ii) In a situation where the perfect positive correlation exists between two securities, their risk and return can be averaged with the proportion.

Assuming the perfect correlation exists between the securities \(U \) and \(W \), average risk and return of \(U \) and \(W \) together for proportion 4 : 1 is calculated as follows:

\[
\text{Risk} = (4 \times 5\% + 1 \times 13\%) \div 5 = 6.6\%
\]

\[
\text{Return} = (4 \times 10\% + 1 \times 15\%) \div 5 = 11\%
\]
Therefore:

<table>
<thead>
<tr>
<th></th>
<th>80% U</th>
<th>100% Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>20% V</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>Risk</td>
<td>6.6%</td>
<td>6%</td>
</tr>
<tr>
<td>Return</td>
<td>11%</td>
<td>11%</td>
</tr>
</tbody>
</table>

When we compare risk of 6.6% and return of 11% with security Y with 6% risk and 11% return, security Y is preferable over the portfolio of securities U and W in proportion of 4 : 1.

Question 24

Expected returns on two stocks for particular market returns are given in the following table:

<table>
<thead>
<tr>
<th>Market Return</th>
<th>Aggressive</th>
<th>Defensive</th>
</tr>
</thead>
<tbody>
<tr>
<td>7%</td>
<td>4%</td>
<td>9%</td>
</tr>
<tr>
<td>25%</td>
<td>40%</td>
<td>18%</td>
</tr>
</tbody>
</table>

You are required to calculate:

(a) The Betas of the two stocks.
(b) Expected return of each stock, if the market return is equally likely to be 7% or 25%.
(c) The Security Market Line (SML), if the risk free rate is 7.5% and market return is equally likely to be 7% or 25%.
(d) The Alphas of the two stocks.

Answer

(a) The Betas of two stocks:

- Aggressive stock: $\beta = \frac{40\% - 4\%}{25\% - 7\%} = 2$
- Defensive stock: $\beta = \frac{18\% - 9\%}{25\% - 7\%} = 0.50$

Alternatively, it can also be solved by using the Characteristic Line Relationship as follows:

\[R_s = \alpha + \beta R_m \]

Where

- $\alpha = $ Alpha
- $\beta = $ Beta
- $R_m = $ Market Return

For Aggressive Stock

\[4\% = \alpha + \beta(7\%) \]
\[40\% = \alpha + \beta(25\%) \]
36% = β(18%)
β = 2

For Defensive Stock
9% = α + β(7%)
18% = α + β(25%)
9% = β(18%)
β = 0.50

(b) Expected returns of the two stocks:-

<table>
<thead>
<tr>
<th>Stock Type</th>
<th>Expected Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggressive Stock</td>
<td>0.5 x 4% + 0.5 x 40% = 22%</td>
</tr>
<tr>
<td>Defensive Stock</td>
<td>0.5 x 9% + 0.5 x 18% = 13.5%</td>
</tr>
</tbody>
</table>

(c) Expected return of market portfolio = 0.5 x 7% + 0.5 x 25% = 16%
∴ Market risk prem. = 16% - 7.5% = 8.5%
∴ SML is, required return = 7.5% + βi 8.5%

(d) R_s = α + βR_m

For Aggressive Stock
22% = α_A + 2(16%)
α_A = -10%

For Defensive Stock
13.5% = α_D + 0.50(16%)
α_D = 5.5%

Question 25
A study by a Mutual fund has revealed the following data in respect of three securities:

<table>
<thead>
<tr>
<th>Security</th>
<th>σ (%)</th>
<th>Correlation with Index, Pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20</td>
<td>0.60</td>
</tr>
<tr>
<td>B</td>
<td>18</td>
<td>0.95</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>0.75</td>
</tr>
</tbody>
</table>

The standard deviation of market portfolio (BSE Sensex) is observed to be 15%.
(i) What is the sensitivity of returns of each stock with respect to the market?
(ii) What are the covariances among the various stocks?
(iii) What would be the risk of portfolio consisting of all the three stocks equally?
(iv) What is the beta of the portfolio consisting of equal investment in each stock?
(v) What is the total, systematic and unsystematic risk of the portfolio in (iv) ?

Answer

(i) Sensitivity of each stock with market is given by its beta.

Standard deviation of market Index = 15%

Variance of market Index = 0.0225

Beta of stocks = $\sigma_i r / \sigma_m$

A = $20 \times 0.60/15 = 0.80$

B = $18 \times 0.95/15 = 1.14$

C = $12 \times 0.75/15 = 0.60$

(ii) Covariance between any 2 stocks = $\beta_i \beta_j \sigma_m^2$

Covariance matrix

<table>
<thead>
<tr>
<th>Stock/Beta</th>
<th>0.80</th>
<th>1.14</th>
<th>0.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>400.000</td>
<td>205.200</td>
<td>108.000</td>
</tr>
<tr>
<td>B</td>
<td>205.200</td>
<td>324.000</td>
<td>153.900</td>
</tr>
<tr>
<td>C</td>
<td>108.000</td>
<td>153.900</td>
<td>144.000</td>
</tr>
</tbody>
</table>

(iii) Total risk of the equally weighted portfolio (Variance) = $400(1/3)^2 + 324(1/3)^2 + 144(1/3)^2$

+ $2 \times 205.20 \times (1/3)^2 + 2 \times 108.0 \times (1/3)^2 + 2 \times 153.900 \times (1/3)^2 = 200.244$

(iv) β of equally weighted portfolio

= $\bar{\beta} = \frac{\sum\beta_i/N}{3} = \frac{0.80 + 1.14 + 0.60}{3} = 0.8467$

(v) Systematic Risk $\bar{\beta} \sigma^2 m = (0.8467)^2 \times (15)^2 = 161.302$

Unsystematic Risk = Total Risk – Systematic Risk

= 200.244 – 161.302 = 38.942

Question 26

Mr. X owns a portfolio with the following characteristics:
It is assumed that security returns are generated by a two factor model.

(i) If Mr. X has ₹ 1,00,000 to invest and sells short ₹ 50,000 of security B and purchases ₹ 1,50,000 of security A what is the sensitivity of Mr. X’s portfolio to the two factors?

(ii) If Mr. X borrows ₹ 1,00,000 at the risk free rate and invests the amount he borrows along with the original amount of ₹ 1,00,000 in security A and B in the same proportion as described in part (i), what is the sensitivity of the portfolio to the two factors?

(iii) What is the expected return premium of factor 2?

Answer

(i) Mr. X’s position in the two securities are +1.50 in security A and -0.5 in security B. Hence the portfolio sensitivities to the two factors:-

\[b_{prop. \ 1} = 1.50 \times 0.80 + (-0.50 \times 1.50) = 0.45 \]

\[b_{prop. \ 2} = 1.50 \times 0.60 + (-0.50 \times 1.20) = 0.30 \]

(ii) Mr. X’s current position:

<table>
<thead>
<tr>
<th>Security</th>
<th>Amount Invested</th>
<th>Current Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Security A</td>
<td>₹ 3,00,000</td>
<td>3</td>
</tr>
<tr>
<td>Security B</td>
<td>₹ 1,00,000</td>
<td>-1</td>
</tr>
<tr>
<td>Risk free</td>
<td>₹ 100,000</td>
<td>-1</td>
</tr>
</tbody>
</table>

\[b_{prop. \ 1} = 3.0 \times 0.80 + (-1 \times 1.50) + (-1 \times 0) = 0.90 \]

\[b_{prop. \ 2} = 3.0 \times 0.60 + (-1 \times 1.20) + (-1 \times 0) = 0.60 \]

(iii) Expected Return = Risk Free Rate of Return + Risk Premium

Let \(\lambda_1 \) and \(\lambda_2 \) are the Value Factor 1 and Factor 2 respectively. Accordingly

\[15 = 10 + 0.80 \lambda_1 + 0.60 \lambda_2 \]

\[20 = 10 + 1.50 \lambda_1 + 1.20 \lambda_2 \]

On solving equation, the value of \(\lambda_1 = 0 \), and Securities A & B shall be as follows:

Security A

- Total Return = 15%
- Risk Free Return = 10%
- Risk Premium = 5%

Security B

- Total Return = 20%
- Risk Free Return = 10%
- Risk Premium = 10%
Question 27

Mr. Tempest has the following portfolio of four shares:

<table>
<thead>
<tr>
<th>Name</th>
<th>Beta</th>
<th>Investment ₹ Lac.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxy Rin Ltd.</td>
<td>0.45</td>
<td>0.80</td>
</tr>
<tr>
<td>Boxed Ltd.</td>
<td>0.35</td>
<td>1.50</td>
</tr>
<tr>
<td>Square Ltd.</td>
<td>1.15</td>
<td>2.25</td>
</tr>
<tr>
<td>Ellipse Ltd.</td>
<td>1.85</td>
<td>4.50</td>
</tr>
</tbody>
</table>

The risk free rate of return is 7% and the market rate of return is 14%.

Required.

(i) Determine the portfolio return. (ii) Calculate the portfolio Beta.

Answer

Market Risk Premium (A) = 14% – 7% = 7%

<table>
<thead>
<tr>
<th>Share</th>
<th>Beta</th>
<th>Risk Premium (Beta x A) %</th>
<th>Risk Free Return %</th>
<th>Return %</th>
<th>Return ₹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxy Rin Ltd.</td>
<td>0.45</td>
<td>3.15</td>
<td>7</td>
<td>10.15</td>
<td>8,120</td>
</tr>
<tr>
<td>Boxed Ltd.</td>
<td>0.35</td>
<td>2.45</td>
<td>7</td>
<td>9.45</td>
<td>14,175</td>
</tr>
<tr>
<td>Square Ltd.</td>
<td>1.15</td>
<td>8.05</td>
<td>7</td>
<td>15.05</td>
<td>33,863</td>
</tr>
<tr>
<td>Ellipse Ltd.</td>
<td>1.85</td>
<td>12.95</td>
<td>7</td>
<td>19.95</td>
<td>89,775</td>
</tr>
<tr>
<td>Total Return</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,45,933</td>
</tr>
</tbody>
</table>

Total Investment ₹ 9,05,000

(i) Portfolio Return = ₹ \frac{1,45,933}{9,05,000} × 100 = 16.13%

(ii) Portfolio Beta

Portfolio Return = Risk Free Rate + Risk Premium x β = 16.13%

\[7\% + 7β = 16.13\% \]

β = 1.30

Alternative Approach

First we shall compute Portfolio Beta using the weighted average method as follows:

\[\text{Beta}_P = \frac{0.45 \times 0.80}{9.05} + \frac{0.35 \times 1.50}{9.05} + \frac{1.15 \times 2.25}{9.05} + \frac{1.85 \times 4.50}{9.05} \]
Accordingly,

(i) Portfolio Return using CAPM formula will be as follows:

\[R_P = R_F + \beta_P (R_M - R_F) \]

\[= 7\% + 1.3035(14\% - 7\%) = 7\% + 1.3035(7\%) \]

\[= 7\% + 9.1245\% = 16.1245\% \]

(ii) Portfolio Beta

As calculated above 1.3035

Question 28

Amal Ltd. has been maintaining a growth rate of 12% in dividends. The company has paid dividend @ ₹ 3 per share. The rate of return on market portfolio is 15% and the risk-free rate of return in the market has been observed as 10%. The beta co-efficient of the company’s share is 1.2.

You are required to calculate the expected rate of return on the company’s shares as per CAPM model and the equilibrium price per share by dividend growth model.

Answer

Capital Asset Pricing Model (CAPM) formula for calculation of expected rate of return is

\[E_R = R_f + \beta (R_m - R_f) \]

\[E_R = \text{Expected Return} \]

\[\beta = \text{Beta of Security} \]

\[R_m = \text{Market Return} \]

\[R_f = \text{Risk free Rate} \]

\[= 10 + [1.2 (15 - 10)] \]

\[= 10 + 1.2 (5) \]

\[= 10 + 6 = 16\% \text{ or } 0.16 \]

Applying dividend growth mode for the calculation of per share equilibrium price:-

\[E_R = \frac{D_1}{P_0} + g \]

\[\text{or } 0.16 = \frac{3(1.12)}{P_0} + 0.12 \quad \text{or} \quad 0.16 - 0.12 = \frac{3.36}{P_0} \]
or \(0.04 P_0 = 3.36\) or \(P_0 = \frac{3.36}{0.04} = ₹ 84\)

Therefore, equilibrium price per share will be ₹ 84.

Question 29

The following information is available in respect of Security X

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equilibrium Return</td>
<td>15%</td>
</tr>
<tr>
<td>Market Return</td>
<td>15%</td>
</tr>
<tr>
<td>7% Treasury Bond Trading at</td>
<td>$140</td>
</tr>
<tr>
<td>Covariance of Market Return and Security Return</td>
<td>225%</td>
</tr>
<tr>
<td>Coefficient of Correlation</td>
<td>0.75</td>
</tr>
</tbody>
</table>

You are required to determine the Standard Deviation of Market Return and Security Return.

Answer

First we shall compute the \(\beta\) of Security X.

Risk Free Rate \(= \frac{\text{Coupon Payment}}{\text{Current Market Price}} = \frac{7}{140} = 5\%\)

Assuming equilibrium return to be equal to CAPM return then:

\[15\% = R_f + \beta_X (R_m - R_f)\]

\(15\% = 5\% + \beta_X (15\% - 5\%)\)

\(\beta_X = 1\)

or it can also be computed as follows:

\[\frac{R_m}{R_s} = \frac{15\%}{15\%} = 1\]

(i) Standard Deviation of Market Return

\[\beta_m = \frac{\text{Cov}_{X,m}}{\sigma_m^2} = \frac{225\%}{\sigma_m^2} = 1\]

\[\sigma_m^2 = 225\]

\[\sigma_m = \sqrt{225} = 15\%\]
(ii) Standard Deviation of Security Return

\[\beta_X = \frac{\sigma_X}{\sigma_m} \times \rho_{Xm} = \frac{\sigma_X}{15} \times 0.75 = 1 \]

\[\sigma_X = \frac{15}{0.75} = 20\% \]

Question 30

Assuming that shares of ABC Ltd. and XYZ Ltd. are correctly priced according to Capital Asset Pricing Model. The expected return from and Beta of these shares are as follows:

<table>
<thead>
<tr>
<th>Share</th>
<th>Beta</th>
<th>Expected return</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>1.2</td>
<td>19.8%</td>
</tr>
<tr>
<td>XYZ</td>
<td>0.9</td>
<td>17.1%</td>
</tr>
</tbody>
</table>

You are required to derive Security Market Line.

Answer

CAPM = \(R_f + \beta (R_m - R_f) \)

According

\[R_{ABC} = R_f + 1.2 (R_m - R_f) = 19.8 \]
\[R_{XYZ} = R_f + 0.9 (R_m - R_f) = 17.1 \]

19.8 = \(R_f + 1.2 (R_m - R_f) \) \quad ------(1)

17.1 = \(R_f + 0.9 (R_m - R_f) \) \quad ------(2)

Deduct (2) from (1)

2.7 = 0.3 (R_m - R_f)

R_m - R_f = 9

\[R_f = R_m - 9 \]

Substituting in equation (1)

19.8 = (R_m - 9) + 1.2 (R_m - R_m + 9)

19.8 = R_m - 9 + 10.8

Then R_m = 18% and R_f = 9%

Security Market Line = \(R_f + \beta (\text{Market Risk Premium}) \)

= 9% + \(\beta \times 9\% \)
Question 31

A Ltd. has an expected return of 22% and Standard deviation of 40%. B Ltd. has an expected return of 24% and Standard deviation of 38%. A Ltd. has a beta of 0.86 and B Ltd. a beta of 1.24. The correlation coefficient between the return of A Ltd. and B Ltd. is 0.72. The Standard deviation of the market return is 20%. Suggest:

(i) Is investing in B Ltd. better than investing in A Ltd.?

(ii) If you invest 30% in B Ltd. and 70% in A Ltd., what is your expected rate of return and portfolio Standard deviation?

(iii) What is the market portfolios expected rate of return and how much is the risk-free rate?

(iv) What is the beta of Portfolio if A Ltd.’s weight is 70% and B Ltd.’s weight is 30%?

Answer

(i) A Ltd. has lower return and higher risk than B Ltd. investing in B Ltd. is better than in A Ltd. because the returns are higher and the risk, lower. However, investing in both will yield diversification advantage.

(ii)

\[
\sigma^2_{AB} = 0.40^2 \times 0.7^2 + 0.38^2 \times 0.3^2 + 2 \times 0.7 \times 0.3 \times 0.72 \times 0.40 \times 0.38 = 0.1374
\]

\[
\sigma_{AB} = \sqrt{\sigma^2_{AB}} = \sqrt{0.1374} = 0.37\%
\]

*Answer = 37.06% is also correct and variation may occur due to approximation.

(iii) This risk-free rate will be the same for A and B Ltd. Their rates of return are given as follows:

\[
r_A = 22 = r_f + (r_m - r_f) 0.86
\]

\[
r_B = 24 = r_f + (r_m - r_f) 1.24
\]

\[
r_A - r_B = -2 = (r_m - r_f) (-0.38)
\]

\[
r_m - r_f = -2/-0.38 = 5.26%
\]

\[
r_A = 22 = r_f + (5.26) 0.86
\]

\[
r_f = 17.5\%*
\]

\[
r_B = 24 = r_f + (5.26) 1.24
\]

\[
r_f = 17.5\%*
\]

\[
r_m = 17.5 + 5.26 = 22.76%
\]

*Answer = 17.47% might occur due to variation in approximation.
**Answer may show small variation due to approximation. Exact answer is 22.73%.

(iv) \[\beta_{AB} = \beta_A \times W_A + \beta_B \times W_B \]
 \[= 0.86 \times 0.7 + 1.24 \times 0.3 = 0.974 \]

Question 32

XYZ Ltd. has substantial cash flow and until the surplus funds are utilised to meet the future capital expenditure, likely to happen after several months, are invested in a portfolio of short-term equity investments, details for which are given below:

<table>
<thead>
<tr>
<th>Investment</th>
<th>No. of shares</th>
<th>Beta</th>
<th>Market price per share</th>
<th>Expected dividend yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>60,000</td>
<td>1.16</td>
<td>4.29</td>
<td>19.50%</td>
</tr>
<tr>
<td>II</td>
<td>80,000</td>
<td>2.28</td>
<td>2.92</td>
<td>24.00%</td>
</tr>
<tr>
<td>III</td>
<td>1,00,000</td>
<td>0.90</td>
<td>2.17</td>
<td>17.50%</td>
</tr>
<tr>
<td>IV</td>
<td>1,25,000</td>
<td>1.50</td>
<td>3.14</td>
<td>26.00%</td>
</tr>
</tbody>
</table>

The current market return is 19% and the risk free rate is 11%.

Required to:

(i) Calculate the risk of XYZ’s short-term investment portfolio relative to that of the market;

(ii) Whether XYZ should change the composition of its portfolio.

Answer

(i) **Computation of Beta of Portfolio**

<table>
<thead>
<tr>
<th>Investment</th>
<th>No. of shares</th>
<th>Market Price</th>
<th>Market Value</th>
<th>Dividend Yield</th>
<th>Dividend</th>
<th>Composition</th>
<th>(\beta)</th>
<th>Weighted (\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>60,000</td>
<td>4.29</td>
<td>2,57,400</td>
<td>19.50%</td>
<td>50,193</td>
<td>0.2339</td>
<td>1.16</td>
<td>0.27</td>
</tr>
<tr>
<td>II</td>
<td>80,000</td>
<td>2.92</td>
<td>2,33,600</td>
<td>24.00%</td>
<td>56,064</td>
<td>0.2123</td>
<td>2.28</td>
<td>0.48</td>
</tr>
<tr>
<td>III</td>
<td>1,00,000</td>
<td>2.17</td>
<td>2,17,000</td>
<td>17.50%</td>
<td>37,975</td>
<td>0.1972</td>
<td>0.90</td>
<td>0.18</td>
</tr>
<tr>
<td>IV</td>
<td>1,25,000</td>
<td>3.14</td>
<td>3,92,500</td>
<td>26.00%</td>
<td>1,02,050</td>
<td>0.3566</td>
<td>1.50</td>
<td>0.53</td>
</tr>
<tr>
<td>Total</td>
<td>11,00,500</td>
<td>2,46,282</td>
<td>1,10,500</td>
<td></td>
<td></td>
<td></td>
<td>1.46</td>
<td></td>
</tr>
</tbody>
</table>

\[
\text{Beta of Port Folio} = \frac{2.46,282}{11,00,500} = 0.2238
\]

\[
\text{Market Risk implicit} = 0.2238 = 0.11 + \beta \times (0.19 - 0.11)
\]

Or, \[0.08 \beta + 0.11 = 0.2238 \]
\[\beta = \frac{0.2238 - 0.11}{0.08} = 1.42 \]

Market \(\beta \) implicit is 1.42 while the portfolio \(\beta \) is 1.46. Thus the portfolio is marginally risky compared to the market.

(iii) The decision regarding change of composition may be taken by comparing the dividend yield (given) and the expected return as per CAPM as follows:

Expected return \(R_s \) as per CAPM is:

For investment I,

\[R_s = I_{RF} + (R_M - I_{RF}) \beta \]

\[= 0.11 + (0.19 - 0.11) 1.16 \]

\[= 20.28\% \]

For investment II,

\[R_s = 0.11 + (0.19 - 0.11) 2.28 = 29.24\% \]

For investment III,

\[R_s = 0.11 + (0.19 - 0.11) 0.90 \]

\[= 18.20\% \]

For investment IV,

\[R_s = 0.11 + (0.19 - 0.11) 1.50 \]

\[= 23\% \]

Comparison of dividend yield with the expected return \(R_s \) shows that the dividend yields of investment I, II and III are less than the corresponding \(R_s \). So, these investments are over-priced and should be sold by the investor. However, in case of investment IV, the dividend yield is more than the corresponding \(R_s \), so, XYZ Ltd. should increase its proportion.

Question 33

A company has a choice of investments between several different equity oriented mutual funds. The company has an amount of ₹1 crore to invest. The details of the mutual funds are as follows:

<table>
<thead>
<tr>
<th>Mutual Fund</th>
<th>Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.6</td>
</tr>
<tr>
<td>B</td>
<td>1.0</td>
</tr>
<tr>
<td>C</td>
<td>0.9</td>
</tr>
<tr>
<td>D</td>
<td>2.0</td>
</tr>
<tr>
<td>E</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Required:

(i) If the company invests 20% of its investment in the first two mutual funds and an equal amount in the mutual funds C, D and E, what is the beta of the portfolio?

(ii) If the company invests 15% of its investment in C, 15% in A, 10% in E and the balance in equal amount in the other two mutual funds, what is the beta of the portfolio?

(iii) If the expected return of market portfolio is 12% at a beta factor of 1.0, what will be the portfolios expected return in both the situations given above?

Answer

With 20% investment in each MF Portfolio Beta is the weighted average of the Betas of various securities calculated as below:

(i)

<table>
<thead>
<tr>
<th>Investment</th>
<th>Beta (β)</th>
<th>Investment (₹ Lacs)</th>
<th>Weighted Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.6</td>
<td>20</td>
<td>32</td>
</tr>
<tr>
<td>B</td>
<td>1.0</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>C</td>
<td>0.9</td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td>D</td>
<td>2.0</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>E</td>
<td>0.6</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>122</td>
</tr>
</tbody>
</table>

Weighted Beta (β) = 1.22

(ii) With varied percentages of investments portfolio beta is calculated as follows:

<table>
<thead>
<tr>
<th>Investment</th>
<th>Beta (β)</th>
<th>Investment (₹ Lacs)</th>
<th>Weighted Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.6</td>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>B</td>
<td>1.0</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>C</td>
<td>0.9</td>
<td>15</td>
<td>13.5</td>
</tr>
<tr>
<td>D</td>
<td>2.0</td>
<td>30</td>
<td>60</td>
</tr>
<tr>
<td>E</td>
<td>0.6</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>133.5</td>
</tr>
</tbody>
</table>

Weighted Beta (β) = 1.335

(iii) Expected return of the portfolio with pattern of investment as in case (i)

= 12% × 1.22 i.e. 14.64%

Expected Return with pattern of investment as in case (ii) = 12% × 1.335 i.e., 16.02%.
Question 34

Suppose that economy A is growing rapidly and you are managing a global equity fund and so far you have invested only in developed-country stocks only. Now you have decided to add stocks of economy A to your portfolio. The table below shows the expected rates of return, standard deviations, and correlation coefficients (all estimates are for aggregate stock market of developed countries and stock market of Economy A).

<table>
<thead>
<tr>
<th></th>
<th>Developed Country Stocks</th>
<th>Stocks of Economy A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected rate of return (annualized percentage)</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Risk [Annualized Standard Deviation (%)]</td>
<td>16</td>
<td>30</td>
</tr>
<tr>
<td>Correlation Coefficient (ρ)</td>
<td></td>
<td>0.30</td>
</tr>
</tbody>
</table>

Assuming the risk-free interest rate to be 3%, you are required to determine:

(a) What percentage of your portfolio should you allocate to stocks of Economy A if you want to increase the expected rate of return on your portfolio by 0.5%?

(b) What will be the standard deviation of your portfolio assuming that stocks of Economy A are included in the portfolio as calculated above?

(c) Also show how well the Fund will be compensated for the risk undertaken due to inclusion of stocks of Economy A in the portfolio?

Answer

(a) Let the weight of stocks of Economy A is expressed as w, then

\[(1-w) \times 10.0 + w \times 15.0 = 10.5\]

i.e. \(w = 0.1 \) or 10%.

(b) Variance of portfolio shall be:

\[(0.9)^2 \times 0.16 + (0.1)^2 \times (0.30)^2 + 2 \times (0.9) \times (0.1) \times (0.16) \times (0.30) \times (0.30) = 0.02423\]

Standard deviation is \(\sqrt{0.02423} = 0.15565\) or 15.6%.

(c) The Sharpe ratio will improve by approximately 0.04, as shown below:

\[
\text{Sharpe Ratio} = \frac{\text{Expected Return} - \text{Risk Free Rate of Return}}{\text{Standard Deviation}}
\]

Investment only in developed countries: \(\frac{10 - 3}{16} = 0.437\)

With inclusion of stocks of Economy A: \(\frac{10.5 - 3}{15.6} = 0.481\)
Question 35

Mr. FedUp wants to invest an amount of ₹520 lakhs and had approached his Portfolio Manager. The Portfolio Manager had advised Mr. FedUp to invest in the following manner:

<table>
<thead>
<tr>
<th>Security</th>
<th>Moderate</th>
<th>Better</th>
<th>Good</th>
<th>Very Good</th>
<th>Best</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount (in ₹Lakhs)</td>
<td>60</td>
<td>80</td>
<td>100</td>
<td>120</td>
<td>160</td>
</tr>
<tr>
<td>Beta</td>
<td>0.5</td>
<td>1.00</td>
<td>0.80</td>
<td>1.20</td>
<td>1.50</td>
</tr>
</tbody>
</table>

You are required to advise Mr. FedUp in regard to the following, using Capital Asset Pricing Methodology:

(i) Expected return on the portfolio, if the Government Securities are at 8% and the NIFTY is yielding 10%.

(ii) Advisability of replacing Security ‘Better’ with NIFTY.

Answer

(i) Computation of Expected Return from Portfolio

<table>
<thead>
<tr>
<th>Security</th>
<th>Beta (β)</th>
<th>Expected Return (r) as per CAPM</th>
<th>Amount (₹ Lakhs)</th>
<th>Weights (w)</th>
<th>wr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate</td>
<td>0.50</td>
<td>8%+0.50(10% - 8%) = 9%</td>
<td>60</td>
<td>0.115</td>
<td>1.035</td>
</tr>
<tr>
<td>Better</td>
<td>1.00</td>
<td>8%+1.00(10% - 8%) = 10%</td>
<td>80</td>
<td>0.154</td>
<td>1.540</td>
</tr>
<tr>
<td>Good</td>
<td>0.80</td>
<td>8%+0.80(10% - 8%) = 9.60%</td>
<td>100</td>
<td>0.192</td>
<td>1.843</td>
</tr>
<tr>
<td>Very Good</td>
<td>1.20</td>
<td>8%+1.20(10% - 8%) = 10.40%</td>
<td>120</td>
<td>0.231</td>
<td>2.402</td>
</tr>
<tr>
<td>Best</td>
<td>1.50</td>
<td>8%+1.50(10% - 8%) = 11%</td>
<td>160</td>
<td>0.308</td>
<td>3.388</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>520</td>
<td>1</td>
<td>10.208</td>
</tr>
</tbody>
</table>

Thus Expected Return from Portfolio 10.208% say 10.21%.

Alternatively, it can be computed as follows:

Average β = 0.50 x 60/520 + 1.00 x 80/520 + 0.80 x 100/520 + 1.20 x 120/520 + 1.50 x 160/520 = 1.104

As per CAPM

= 0.08 + 1.104(0.10 – 0.08) = 0.10208 i.e. 10.208%

(ii) As computed above the expected return from Better is 10% same as from Nifty, hence there will be no difference even if the replacement of security is made. The main logic behind this neutrality is that the beta of security ‘Better’ is 1 which clearly indicates that this security shall yield same return as market return.
Question 36

Your client is holding the following securities:

<table>
<thead>
<tr>
<th>Particulars of Securities</th>
<th>Cost</th>
<th>Dividends/Interest</th>
<th>Market price</th>
<th>Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>₹</td>
<td>₹</td>
<td>₹</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Equity Shares:</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold Ltd.</td>
<td>10,000</td>
<td>1,725</td>
<td>9,800</td>
<td>0.6</td>
</tr>
<tr>
<td>Silver Ltd.</td>
<td>15,000</td>
<td>1,000</td>
<td>16,200</td>
<td>0.8</td>
</tr>
<tr>
<td>Bronze Ltd.</td>
<td>14,000</td>
<td>700</td>
<td>20,000</td>
<td>0.6</td>
</tr>
<tr>
<td>GOI Bonds</td>
<td>36,000</td>
<td>3,600</td>
<td>34,500</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Average return of the portfolio is 15.7%, calculate:

(i) Expected rate of return in each, using the Capital Asset Pricing Model (CAPM).

(ii) Risk free rate of return.

Answer

<table>
<thead>
<tr>
<th>Particulars of Securities</th>
<th>Cost ₹</th>
<th>Dividend</th>
<th>Capital gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold Ltd.</td>
<td>10,000</td>
<td>1,725</td>
<td>-200</td>
</tr>
<tr>
<td>Silver Ltd.</td>
<td>15,000</td>
<td>1,000</td>
<td>1,200</td>
</tr>
<tr>
<td>Bronze Ltd.</td>
<td>14,000</td>
<td>700</td>
<td>6,000</td>
</tr>
<tr>
<td>GOI Bonds</td>
<td>36,000</td>
<td>3,600</td>
<td>-1,500</td>
</tr>
<tr>
<td>Total</td>
<td>75,000</td>
<td>7,025</td>
<td>5,500</td>
</tr>
</tbody>
</table>

Expected rate of return on market portfolio

\[
\text{Expected rate of return} = \frac{\text{Dividend Earned + Capital appreciation}}{\text{Initial investment}} \times 100
\]

\[
= \frac{\text{₹ 7,025 + ₹ 5,500}}{\text{₹ 75,000}} \times 100 = 16.7\%
\]

Risk free return

\[
\text{Average of Betas} = \frac{0.6 + 0.8 + 0.6 + 0.01}{4}
\]

Average of Betas = 0.50

Average return = Risk free return + Average Betas (Expected return – Risk free return)

15.7 = Risk free return + 0.50 (16.7 – Risk free return)
Risk free return = 14.7%
* Alternatively it can also be calculated through Weighted Average Beta.

Expected Rate of Return for each security is

Rate of Return = Rf + B (Rm – Rf)

Gold Ltd. = 14.7 + 0.6 (16.7 – 14.7) = 15.90%
Silver Ltd. = 14.7 + 0.8 (16.7 – 14.7) = 16.30%
Bronz Ltd. = 14.7 + 0.6 (16.7 – 14.7) = 15.90%
GOI Bonds = 14.7 + 0.01 (16.7 – 14.7) = 14.72%

* Alternatively it can also be computed by using Weighted Average Method.

Question 37

A holds the following portfolio:

<table>
<thead>
<tr>
<th>Share/Bond</th>
<th>Beta</th>
<th>Initial Price</th>
<th>Dividends</th>
<th>Market Price at end of year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epsilon Ltd.</td>
<td>0.8</td>
<td>25</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>Sigma Ltd.</td>
<td>0.7</td>
<td>35</td>
<td>2</td>
<td>60</td>
</tr>
<tr>
<td>Omega Ltd.</td>
<td>0.5</td>
<td>45</td>
<td>2</td>
<td>135</td>
</tr>
<tr>
<td>GOI Bonds</td>
<td>0.01</td>
<td>1,000</td>
<td>140</td>
<td>1,005</td>
</tr>
</tbody>
</table>

Calculate:
(i) The expected rate of return on his portfolio using Capital Asset Pricing Method (CAPM)
(ii) The average return of his portfolio.

Risk-free return is 14%.

Answer

(i) Expected rate of return

<table>
<thead>
<tr>
<th>Shares/Bond</th>
<th>Total Investments</th>
<th>Dividends</th>
<th>Capital Gains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epsilon Ltd.</td>
<td>25</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Sigma Ltd.</td>
<td>35</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Omega Ltd.</td>
<td>45</td>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td>GOI Bonds</td>
<td>1,000</td>
<td>140</td>
<td>5</td>
</tr>
</tbody>
</table>

| Total | 1,105 | 146 | 145 |
Expected Return on market portfolio= \(\frac{146+145}{1105} = 26.33\% \)

\[
\text{CAPM} \quad E(R_p) = RF + \beta [E(RM) - RF]
\]

<table>
<thead>
<tr>
<th>Security</th>
<th>(\beta)</th>
<th>([E(RM) - RF])</th>
<th>(E(R_p))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epsilon Ltd</td>
<td>14+0.8</td>
<td>[26.33 - 14]</td>
<td>14+9.86</td>
</tr>
<tr>
<td>Sigma Ltd.</td>
<td>14+0.7</td>
<td>[26.33 - 14]</td>
<td>14+8.63</td>
</tr>
<tr>
<td>Omega Ltd.</td>
<td>14+0.5</td>
<td>[26.33 - 14]</td>
<td>14+6.17</td>
</tr>
<tr>
<td>GOI Bonds</td>
<td>14+0.01</td>
<td>[26.33 - 14]</td>
<td>14+0.12</td>
</tr>
</tbody>
</table>

\[E(R_p) = \text{Average Return of Portfolio} = \frac{23.86 + 22.63 + 20.17 + 14.12}{4} = 20.20\% \]

Alternatively, \(\frac{0.8 + 0.7 + 0.5 + 0.01}{4} = 0.5025 \)

\[14 + 0.5025(26.33 - 14) = 14 + 6.20 = 20.20\% \]

Question 38

Your client is holding the following securities:

<table>
<thead>
<tr>
<th>Particulars of Securities</th>
<th>Cost (\₹)</th>
<th>Dividends (\₹)</th>
<th>Market Price (\₹)</th>
<th>BETA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equity Shares:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Co. X</td>
<td>8,000</td>
<td>800</td>
<td>8,200</td>
<td>0.8</td>
</tr>
<tr>
<td>Co. Y</td>
<td>10,000</td>
<td>800</td>
<td>10,500</td>
<td>0.7</td>
</tr>
<tr>
<td>Co. Z</td>
<td>16,000</td>
<td>800</td>
<td>22,000</td>
<td>0.5</td>
</tr>
<tr>
<td>PSU Bonds</td>
<td>34,000</td>
<td>3,400</td>
<td>32,300</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Assuming a Risk-free rate of 15%, calculate:

- Expected rate of return in each, using the Capital Asset Pricing Model (CAPM).
- Average return of the portfolio.

Answer

Calculation of expected return on market portfolio (\(R_m \))

<table>
<thead>
<tr>
<th>Investment</th>
<th>Cost (\₹)</th>
<th>Dividends (\₹)</th>
<th>Capital Gains (\₹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shares X</td>
<td>8,000</td>
<td>800</td>
<td>200</td>
</tr>
<tr>
<td>Shares Y</td>
<td>10,000</td>
<td>800</td>
<td>500</td>
</tr>
<tr>
<td>Security</td>
<td>Shares X</td>
<td>Shares Y</td>
<td>Shares Z</td>
</tr>
<tr>
<td>---------------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Shares Z</td>
<td>16,000</td>
<td>800</td>
<td>6,000</td>
</tr>
<tr>
<td>PSU Bonds</td>
<td>34,000</td>
<td>3,400</td>
<td>–1,700</td>
</tr>
</tbody>
</table>

\[
R_m = \frac{5,800 + 5,000}{68,000} \times 100 = 15.88\%
\]

Calculation of expected rate of return on individual security:

Security

- Shares X: \[15 + 0.8 (15.88 - 15.0) = 15.70\%\]
- Shares Y: \[15 + 0.7 (15.88 - 15.0) = 15.62\%\]
- Shares Z: \[15 + 0.5 (15.88 - 15.0) = 15.44\%\]
- PSU Bonds: \[15 + 0.2 (15.88 - 15.0) = 15.18\%\]

Calculation of the Average Return of the Portfolio:

\[
\text{Average Return} = \frac{15.70 + 15.62 + 15.44 + 15.18}{4} = 15.49\%.
\]

Question 39

An investor is holding 1,000 shares of Fatlass Company. Presently the rate of dividend being paid by the company is ₹2 per share and the share is being sold at ₹25 per share in the market. However, several factors are likely to change during the course of the year as indicated below:

<table>
<thead>
<tr>
<th>Risk free rate</th>
<th>12%</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market risk premium</td>
<td>6%</td>
<td>4%</td>
</tr>
<tr>
<td>Beta value</td>
<td>1.4</td>
<td>1.25</td>
</tr>
<tr>
<td>Expected growth rate</td>
<td>5%</td>
<td>9%</td>
</tr>
</tbody>
</table>

In view of the above factors whether the investor should buy, hold or sell the shares? And why?

Answer

On the basis of existing and revised factors, rate of return and price of share is to be calculated.

Existing rate of return

\[
= R_t + \text{Beta} (R_m - R_f)
\]
Strategic Financial Management

= 12% + 1.4 (6%) = 20.4%
Revised rate of return
= 10% + 1.25 (4%) = 15%
Price of share (original)

\[
P_o = \frac{D(1+g)}{K_e - g} = \frac{2(1.05)}{0.204 - 0.05} = \frac{2.10}{0.154} = \text{Rs.}13.63
\]
Price of share (Revised)

\[
P_o = \frac{2(1.09)}{0.15 - 0.09} = \frac{2.18}{0.06} = \text{Rs.}36.33
\]
In case of existing market price of ₹ 25 per share, rate of return (20.4%) and possible equilibrium price of share at ₹ 13.63, this share needs to be sold because the share is overpriced (₹ 25 – 13.63) by ₹ 11.37. However, under the changed scenario where growth of dividend has been revised at 9% and the return though decreased at 15% but the possible price of share is to be at ₹ 36.33 and therefore, in order to expect price appreciation to ₹ 36.33 the investor should hold the shares, if other things remain the same.

Question 40

An investor is holding 5,000 shares of X Ltd. Current year dividend rate is ₹ 3/ share. Market price of the share is ₹ 40 each. The investor is concerned about several factors which are likely to change during the next financial year as indicated below:

<table>
<thead>
<tr>
<th></th>
<th>Current Year</th>
<th>Next Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dividend paid/anticipated per share (₹)</td>
<td>3</td>
<td>2.5</td>
</tr>
<tr>
<td>Risk free rate</td>
<td>12%</td>
<td>10%</td>
</tr>
<tr>
<td>Market Risk Premium</td>
<td>5%</td>
<td>4%</td>
</tr>
<tr>
<td>Beta Value</td>
<td>1.3</td>
<td>1.4</td>
</tr>
<tr>
<td>Expected growth</td>
<td>9%</td>
<td>7%</td>
</tr>
</tbody>
</table>

In view of the above, advise whether the investor should buy, hold or sell the shares.

Answer

On the basis of existing and revised factors, rate of return and price of share is to be calculated.

Existing rate of return

\[
= R_t + \text{Beta} \ (R_m - R_t) \\
= 12\% + 1.3 \ (5\%) = 18.5\%
\]
Revised rate of return

\[= 10\% + 1.4 \times (4\%) = 15.60\% \]

Price of share (original)

\[P_o = \frac{D (1 + g)}{K_e - g} = \frac{3 \times (1.09)}{0.185 - 0.09} = \frac{3.27}{0.095} = ₹ 34.42 \]

Price of share (Revised)

\[P_o = \frac{2.50 \times (1.07)}{0.156 - 0.07} = \frac{2.675}{0.086} = ₹ 31.10 \]

Market price of share of ₹ 40 is higher in comparison to current equilibrium price of ₹ 34.42 and revised equity price of ₹ 31.10. Under this situation investor should sell the share.

Question 41

An investor has two portfolios known to be on minimum variance set for a population of three securities A, B and C having below mentioned weights:

<table>
<thead>
<tr>
<th>Portfolio</th>
<th>WA</th>
<th>WB</th>
<th>WC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portfolio X</td>
<td>0.30</td>
<td>0.40</td>
<td>0.30</td>
</tr>
<tr>
<td>Portfolio Y</td>
<td>0.20</td>
<td>0.50</td>
<td>0.30</td>
</tr>
</tbody>
</table>

It is supposed that there are no restrictions on short sales.

(i) What would be the weight for each stock for a portfolio constructed by investing ₹ 5,000 in portfolio X and ₹ 3,000 in portfolio Y?

(ii) Suppose the investor invests ₹ 4,000 out of ₹ 8,000 in security A. How will he allocate the balance between security B and C to ensure that his portfolio is on minimum variance set?

Answer

(i) Investment committed to each security would be:

<table>
<thead>
<tr>
<th>Portfolio</th>
<th>A (₹)</th>
<th>B (₹)</th>
<th>C (₹)</th>
<th>Total (₹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portfolio X</td>
<td>1,500</td>
<td>2,000</td>
<td>1,500</td>
<td>5,000</td>
</tr>
<tr>
<td>Portfolio Y</td>
<td>600</td>
<td>1,500</td>
<td>900</td>
<td>3,000</td>
</tr>
<tr>
<td>Combined Portfolio</td>
<td>2,100</td>
<td>3,500</td>
<td>2,400</td>
<td>8,000</td>
</tr>
<tr>
<td>: Stock weights</td>
<td>0.26</td>
<td>0.44</td>
<td>0.30</td>
<td></td>
</tr>
</tbody>
</table>

© The Institute of Chartered Accountants of India
(ii) The equation of critical line takes the following form:-

\[WB = a + bWA \]

Substituting the values of WA & WB from portfolio X and Y in above equation, we get

\[0.40 = a + 0.30b, \text{ and} \]
\[0.50 = a + 0.20b \]

Solving above equation we obtain the slope and intercept, \(a = 0.70 \) and \(b = -1 \) and thus, the critical line is

\[WB = 0.70 - WA \]

If half of the funds is invested in security A then,

\[WB = 0.70 - 0.50 = 0.20 \]

Since \(WA + WB + WC = 1 \)

\[WC = 1 - 0.50 - 0.20 = 0.30 \]

\[\therefore \text{Allocation of funds to security B} = 0.20 \times 8,000 = \₹ 1,600, \text{ and} \]
\[\text{Security C} = 0.30 \times 8,000 = \₹ 2,400 \]

Question 42

X Co., Ltd., invested on 1.4.2009 in certain equity shares as below:

<table>
<thead>
<tr>
<th>Name of Co.</th>
<th>No. of shares</th>
<th>Cost (₹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M Ltd.</td>
<td>1,000 (₹ 100 each)</td>
<td>2,00,000</td>
</tr>
<tr>
<td>N Ltd.</td>
<td>500 (₹ 10 each)</td>
<td>1,50,000</td>
</tr>
</tbody>
</table>

In September, 2009, 10% dividend was paid out by M Ltd. and in October, 2009, 30% dividend paid out by N Ltd. On 31.3.2010 market quotations showed a value of ₹ 220 and ₹ 290 per share for M Ltd. and N Ltd. respectively.

On 1.4.2010, investment advisors indicate (a) that the dividends from M Ltd. and N Ltd. for the year ending 31.3.2011 are likely to be 20% and 35%, respectively and (b) that the probabilities of market quotations on 31.3.2011 are as below:

<table>
<thead>
<tr>
<th>Probability factor</th>
<th>Price/share of M Ltd.</th>
<th>Price/share of N Ltd.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>220</td>
<td>290</td>
</tr>
<tr>
<td>0.5</td>
<td>250</td>
<td>310</td>
</tr>
<tr>
<td>0.3</td>
<td>280</td>
<td>330</td>
</tr>
</tbody>
</table>

You are required to:

(i) Calculate the average return from the portfolio for the year ended 31.3.2010;
(ii) Calculate the expected average return from the portfolio for the year 2010-11; and

(iii) Advise X Co. Ltd., of the comparative risk in the two investments by calculating the standard deviation in each case.

Answer

<table>
<thead>
<tr>
<th>Calculation of return on portfolio for 2009-10</th>
<th>(Calculation in ₹ / share)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Dividend received during the year</td>
<td>10</td>
</tr>
<tr>
<td>Capital gain/loss by 31.03.10</td>
<td>220</td>
</tr>
<tr>
<td>Market value by 31.03.10</td>
<td>200</td>
</tr>
<tr>
<td>Cost of investment</td>
<td>20%</td>
</tr>
<tr>
<td>Gain/loss</td>
<td>30</td>
</tr>
<tr>
<td>Yield</td>
<td>200</td>
</tr>
<tr>
<td>% return</td>
<td>15%</td>
</tr>
<tr>
<td>Weight in the portfolio</td>
<td>57</td>
</tr>
<tr>
<td>Weighted average return</td>
<td>7.55%</td>
</tr>
</tbody>
</table>

Calculation of estimated return for 2010-11

Expected dividend	20	3.5	
Capital gain by 31.03.11	(220x0.2) + (250x0.5) + (280x0.3) – 220 = (253-220)	33	-
	(290x0.2) + (310x0.5) + (330x0.3) – 290 = (312 – 290)	-	22
Yield	53	25.5	
*Market Value 01.04.10	220	290	
% return	24.09%	8.79%	
*Weight in portfolio (1,000x220): (500x290)	60.3	39.7	
Weighted average (Expected) return	18.02%		
(*The market value on 31.03.10 is used as the base for calculating yield for 10-11)			

© The Institute of Chartered Accountants of India
Calculation of Standard Deviation

M Ltd.

<table>
<thead>
<tr>
<th>Exp. market value</th>
<th>Exp. gain</th>
<th>Exp. div.</th>
<th>Exp Yield (1)</th>
<th>Prob. Factor (2)</th>
<th>(1) X(2)</th>
<th>Dev. (PM - P_M)</th>
<th>Square of dev. (3)</th>
<th>(2) X (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>220</td>
<td>0</td>
<td>20</td>
<td>20</td>
<td>0.2</td>
<td>4</td>
<td>-33</td>
<td>1089</td>
<td>217.80</td>
</tr>
<tr>
<td>250</td>
<td>30</td>
<td>20</td>
<td>50</td>
<td>0.5</td>
<td>25</td>
<td>-3</td>
<td>9</td>
<td>4.50</td>
</tr>
<tr>
<td>280</td>
<td>60</td>
<td>20</td>
<td>80</td>
<td>0.3</td>
<td>24</td>
<td>27</td>
<td>729</td>
<td>218.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard Deviation (σ_M)

N Ltd.

<table>
<thead>
<tr>
<th>Exp. market value</th>
<th>Exp. gain</th>
<th>Exp. div.</th>
<th>Exp Yield (1)</th>
<th>Prob. Factor (2)</th>
<th>(1) X(2)</th>
<th>Dev. (PN - P_N)</th>
<th>Square of dev. (3)</th>
<th>(2) X (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>290</td>
<td>0</td>
<td>3.5</td>
<td>3.5</td>
<td>0.2</td>
<td>0.7</td>
<td>-22</td>
<td>484</td>
<td>96.80</td>
</tr>
<tr>
<td>310</td>
<td>20</td>
<td>3.5</td>
<td>23.5</td>
<td>0.5</td>
<td>11.75</td>
<td>-2</td>
<td>4</td>
<td>2.00</td>
</tr>
<tr>
<td>330</td>
<td>40</td>
<td>3.5</td>
<td>43.5</td>
<td>0.3</td>
<td>13.05</td>
<td>18</td>
<td>324</td>
<td>97.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>25.5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard Deviation (σ_N)

Share of company M Ltd. is more risky as the S.D. is more than company N Ltd.

Question 43

An investor holds two stocks A and B. An analyst prepared ex-ante probability distribution for the possible economic scenarios and the conditional returns for two stocks and the market index as shown below:

<table>
<thead>
<tr>
<th>Economic scenario</th>
<th>Probability</th>
<th>Conditional Returns %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Growth</td>
<td>0.40</td>
<td>25</td>
</tr>
<tr>
<td>Stagnation</td>
<td>0.30</td>
<td>10</td>
</tr>
<tr>
<td>Recession</td>
<td>0.30</td>
<td>-5</td>
</tr>
</tbody>
</table>
The risk free rate during the next year is expected to be around 11%. Determine whether the investor should liquidate his holdings in stocks A and B or on the contrary make fresh investments in them. CAPM assumptions are holding true.

Answer

Expected Return on stock A = $E(A) = \sum_{i=G,S,R} P_i A_i$

$(G, S, \& R, \text{ denotes Growth, Stagnation and Recession)}$

$(0.40)(25) + 0.30(10) + 0.30(-5) = 11.5\%$

Expected Return on 'B'

$(0.40 \times 20) + (0.30 \times 15) + 0.30 \times (-8) = 10.1\%$

Expected Return on Market index

$(0.40 \times 18) + (0.30 \times 13) + 0.30 \times (-3) = 10.2\%$

Variance of Market index

$(18 - 10.2)^2 (0.40) + (13 - 10.2)^2 (0.30) + (-3 - 10.2)^2 (0.30)$

$= 24.34 + 2.35 + 52.27 = 78.96\%$

Covariance of stock A and Market Index M

$\text{Cov. (AM)} = \sum_{i=G,S,R} [(A_i - E(A))[M_i - E(M)]P_i]$

$(25 - 11.5) (18 - 10.2)(0.40) + (10 - 11.5)(13 - 10.2)(0.30) + (-5 - 11.5)(-3 - 10.2)(0.30)$

$= 42.12 + (-1.26) + 65.34 = 106.20$

Covariance of stock B and Market index M

$(20-10.1)(18-10.2)(0.40) + (15-10.1)(13-10.2)(0.30) + (-8-10.1)(-3-10.2)(0.30) = 30.89 + 4.12 + 71.67 = 106.68$

Beta for stock A = \frac{\text{Cov}(AM)}{\text{VAR}(M)} = \frac{106.20}{78.96} = 1.345

Beta for Stock B = \frac{\text{Cov}(BM)}{\text{VarM}} = \frac{106.68}{78.96} = 1.351

Required Return for A

$R(A) = R_f + \beta (M-R_f)$

$11\% + 1.345(10.2 - 11) \% = 9.924\%$
7.60 Strategic Financial Management

Required Return for B
11% + 1.351 (10.2 – 11) % = 9.92%

Alpha for Stock A
E (A) – R (A) i.e. 11.5 % – 9.924% = 1.576%

Alpha for Stock B
E (B) – R (B) i.e. 10.1% - 9.92% = 0.18%

Since stock A and B both have positive Alpha, therefore, they are UNDERPRICED. The investor should make fresh investment in them.

Question 44

Following are the details of a portfolio consisting of three shares:

<table>
<thead>
<tr>
<th>Share</th>
<th>Portfolio weight</th>
<th>Beta</th>
<th>Expected return in %</th>
<th>Total variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.20</td>
<td>0.40</td>
<td>14</td>
<td>0.015</td>
</tr>
<tr>
<td>B</td>
<td>0.50</td>
<td>0.50</td>
<td>15</td>
<td>0.025</td>
</tr>
<tr>
<td>C</td>
<td>0.30</td>
<td>1.10</td>
<td>21</td>
<td>0.100</td>
</tr>
</tbody>
</table>

Standard Deviation of Market Portfolio Returns = 10%

You are given the following additional data:

\[
\begin{align*}
\text{Covariance (A, B)} & = 0.030 \\
\text{Covariance (A, C)} & = 0.020 \\
\text{Covariance (B, C)} & = 0.040
\end{align*}
\]

Calculate the following:

(i) The Portfolio Beta

\[
0.20 \times 0.40 + 0.50 \times 0.50 + 0.30 \times 1.10 = 0.66
\]

(ii) Residual variance of each of the three shares

(iii) Portfolio variance using Sharpe Index Model

(iv) Portfolio variance (on the basis of modern portfolio theory given by Markowitz)

Answer

(i) Portfolio Beta

0.20 x 0.40 + 0.50 x 0.50 + 0.30 x 1.10 = 0.66

(ii) Residual Variance

To determine Residual Variance first of all we shall compute the Systematic Risk as follows:
\[
\beta_A^2 \times \sigma_M^2 = (0.40)^2(0.01) = 0.0016
\]
\[
\beta_B^2 \times \sigma_M^2 = (0.50)^2(0.01) = 0.0025
\]
\[
\beta_C^2 \times \sigma_M^2 = (1.10)^2(0.01) = 0.0121
\]

Residual Variance:

\[
\begin{align*}
\text{A} & : 0.015 - 0.0016 = 0.0134 \\
\text{B} & : 0.025 - 0.0025 = 0.0225 \\
\text{C} & : 0.100 - 0.0121 = 0.0879
\end{align*}
\]

(iii) Portfolio variance using Sharpe Index Model

Systematic Variance of Portfolio = \((0.10)^2 \times (0.66)^2 = 0.004356 \)

Unsystematic Variance of Portfolio = \(0.0134 \times (0.20)^2 + 0.0225 \times (0.50)^2 + 0.0879 \times (0.30)^2 = 0.014072 \)

Total Variance = \(0.004356 + 0.014072 = 0.018428 \)

(iv) Portfolio variance on the basis of Markowitz Theory

\[
\begin{align*}
&= (w_A \times w_A \times \sigma_A^2) + (w_A \times w_B \times \text{Cov}_{AB}) + (w_A \times w_C \times \text{Cov}_{AC}) + (w_B \times w_A \times \sigma_B^2) \\
&+ (w_B \times w_C \times \text{Cov}_{BC}) + (w_C \times w_A \times \text{Cov}_{CA}) + (w_C \times w_B \times \text{Cov}_{CB}) + (w_C \times w_C \times \sigma_C^2) \\
&= (0.20 \times 0.20 \times 0.015) + (0.20 \times 0.50 \times 0.030) + (0.20 \times 0.30 \times 0.020) + (0.20 \times 0.50 \times 0.030) + (0.50 \times 0.50 \times 0.025) + (0.50 \times 0.30 \times 0.040) + (0.30 \times 0.20 \times 0.020) + (0.30 \times 0.50 \times 0.040) + (0.30 \times 0.30 \times 0.10) \\
&= 0.0006 + 0.0030 + 0.0012 + 0.0030 + 0.00625 + 0.0060 + 0.0012 + 0.0060 + 0.0090 \\
&= 0.0363
\end{align*}
\]

Question 45

Ramesh wants to invest in stock market. He has got the following information about individual securities:

<table>
<thead>
<tr>
<th>Security</th>
<th>Expected Return</th>
<th>Beta</th>
<th>(\sigma^2_{ci})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15</td>
<td>1.5</td>
<td>40</td>
</tr>
<tr>
<td>B</td>
<td>12</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>2.5</td>
<td>30</td>
</tr>
<tr>
<td>D</td>
<td>09</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>E</td>
<td>08</td>
<td>1.2</td>
<td>20</td>
</tr>
<tr>
<td>F</td>
<td>14</td>
<td>1.5</td>
<td>30</td>
</tr>
</tbody>
</table>
Market index variance is 10 percent and the risk free rate of return is 7%. What should be the optimum portfolio assuming no short sales?

Answer

Securities need to be ranked on the basis of excess return to beta ratio from highest to the lowest.

<table>
<thead>
<tr>
<th>Security</th>
<th>Rᵢ</th>
<th>βᵢ</th>
<th>Rᵢ - R<sub>f</sub></th>
<th>(\frac{Rᵢ - R<sub>f</sub>}{βᵢ})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15</td>
<td>1.5</td>
<td>8</td>
<td>5.33</td>
</tr>
<tr>
<td>B</td>
<td>12</td>
<td>2</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>C</td>
<td>10</td>
<td>2.5</td>
<td>3</td>
<td>1.2</td>
</tr>
<tr>
<td>D</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>8</td>
<td>1.2</td>
<td>1</td>
<td>0.83</td>
</tr>
<tr>
<td>F</td>
<td>14</td>
<td>1.5</td>
<td>7</td>
<td>4.67</td>
</tr>
</tbody>
</table>

Ranked Table:

<table>
<thead>
<tr>
<th>Security</th>
<th>Rᵢ - R<sub>f</sub></th>
<th>βᵢ</th>
<th>(\frac{Rᵢ - R<sub>f</sub>}{σ<sub>eᵢ</sub>²})</th>
<th>(\frac{(Rᵢ - R<sub>f</sub>) x β_i}{σ<sub>eᵢ</sub>²})</th>
<th>(\sum_{i=1}^{N} \frac{(Rᵢ - R<sub>f</sub>) x β_i}{σ<sub>eᵢ</sub>²})</th>
<th>(\frac{βᵢ²}{σ<sub>eᵢ</sub>²})</th>
<th>(\sum_{i=1}^{N} \frac{βᵢ²}{σ<sub>eᵢ</sub>²})</th>
<th>Cᵢ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8</td>
<td>1.5</td>
<td>40</td>
<td>0.30</td>
<td>0.30</td>
<td>0.056</td>
<td>0.056</td>
<td>1.923</td>
</tr>
<tr>
<td>F</td>
<td>7</td>
<td>1.5</td>
<td>30</td>
<td>0.35</td>
<td>0.65</td>
<td>0.075</td>
<td>0.131</td>
<td>2.814</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>2</td>
<td>20</td>
<td>0.50</td>
<td>1.15</td>
<td>0.20</td>
<td>0.331</td>
<td>2.668</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>0.20</td>
<td>1.35</td>
<td>0.10</td>
<td>0.431</td>
<td>2.542</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>2.5</td>
<td>30</td>
<td>0.25</td>
<td>1.60</td>
<td>0.208</td>
<td>0.639</td>
<td>2.165</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>1.2</td>
<td>20</td>
<td>0.06</td>
<td>1.66</td>
<td>0.072</td>
<td>0.711</td>
<td>2.047</td>
</tr>
</tbody>
</table>

CA = \(10 \times 0.30 / [1 + (10 \times 0.056)] \) = 1.923
CF = \(10 \times 0.65 / [1 + (10 \times 0.131)] \) = 2.814
CB = \(10 \times 1.15 / [1 + (10 \times 0.331)] \) = 2.668
CD = \(10 \times 1.35 / [1 + (10 \times 0.431)] \) = 2.542
CC = \(10 \times 1.60 / [1 + (10 \times 0.639)] \) = 2.165
CE = \(10 \times 1.66 / [1 + (10 \times 0.7111)] \) = 2.047
Cut off point is 2.814
\[Z_i = \frac{\beta_i}{\sigma_{ei}^2} \left[\frac{(R_i - R_f)}{\beta_i} - C \right] \]

\[Z_A = \frac{1.5}{40} (5.33 - 2.814) = 0.09435 \]

\[Z_F = \frac{1.5}{30} (4.67 - 2.814) = 0.0928 \]

\[X_A = \frac{0.09435}{0.09435 + 0.0928} = 50.41\% \]

\[X_F = \frac{0.0928}{0.09435 + 0.0928} = 49.59\% \]

Funds to be invested in security A & F are 50.41% and 49.59% respectively.

Question 46

A Portfolio Manager (PM) has the following four stocks in his portfolio:

<table>
<thead>
<tr>
<th>Security</th>
<th>No. of Shares</th>
<th>Market Price per share (₹)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSL</td>
<td>10,000</td>
<td>50</td>
<td>0.9</td>
</tr>
<tr>
<td>CSL</td>
<td>5,000</td>
<td>20</td>
<td>1.0</td>
</tr>
<tr>
<td>SML</td>
<td>8,000</td>
<td>25</td>
<td>1.5</td>
</tr>
<tr>
<td>APL</td>
<td>2,000</td>
<td>200</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Compute the following:

(i) Portfolio beta.

(ii) If the PM seeks to reduce the beta to 0.8, how much risk free investment should he bring in?

(iii) If the PM seeks to increase the beta to 1.2, how much risk free investment should he bring in?

Answer

<table>
<thead>
<tr>
<th>Security</th>
<th>No. of shares (1)</th>
<th>Market Price of Per Share (2)</th>
<th>(1) \times (2)</th>
<th>% to total (w)</th>
<th>(\beta) (x)</th>
<th>wx</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSL</td>
<td>10000</td>
<td>50</td>
<td>500000</td>
<td>0.4167</td>
<td>0.9</td>
<td>0.375</td>
</tr>
<tr>
<td>CSL</td>
<td>5000</td>
<td>20</td>
<td>100000</td>
<td>0.0833</td>
<td>1</td>
<td>0.083</td>
</tr>
<tr>
<td>SML</td>
<td>8000</td>
<td>25</td>
<td>200000</td>
<td>0.1667</td>
<td>1.5</td>
<td>0.250</td>
</tr>
<tr>
<td>APL</td>
<td>2000</td>
<td>200</td>
<td>400000</td>
<td>0.3333</td>
<td>1.2</td>
<td>0.400</td>
</tr>
</tbody>
</table>

1200000 1 1.108
7.64 Strategic Financial Management

Portfolio beta 1.108

(i) Required Beta 0.8

It should become \((0.8 / 1.108)\) 72.2% of present portfolio

If ₹ 12,00,000 is 72.20%, the total portfolio should be

\[₹ 12,00,000 \times 100/72.20 \text{ or } ₹ 16,62,050 \]

Additional investment in zero risk should be \((₹ 16,62,050 – ₹ 12,00,000) = ₹ 4,62,050\)

Revised Portfolio will be

<table>
<thead>
<tr>
<th>Security</th>
<th>No. of shares (1)</th>
<th>Market Price of Per Share (2)</th>
<th>((1) \times (2))</th>
<th>% to total (w)</th>
<th>(\beta (x))</th>
<th>wx</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSL</td>
<td>10000</td>
<td>50</td>
<td>500000</td>
<td>0.3008</td>
<td>0.9</td>
<td>0.271</td>
</tr>
<tr>
<td>CSL</td>
<td>5000</td>
<td>20</td>
<td>100000</td>
<td>0.0602</td>
<td>1</td>
<td>0.060</td>
</tr>
<tr>
<td>SML</td>
<td>8000</td>
<td>25</td>
<td>200000</td>
<td>0.1203</td>
<td>1.5</td>
<td>0.180</td>
</tr>
<tr>
<td>APL</td>
<td>2000</td>
<td>200</td>
<td>400000</td>
<td>0.2407</td>
<td>1.2</td>
<td>0.289</td>
</tr>
<tr>
<td>Risk free asset</td>
<td>46205</td>
<td>10</td>
<td>462050</td>
<td>0.2780</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1662050</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(ii) To increase Beta to 1.2

Required Beta 1.2

It should become \(1.2 / 1.108\) 108.30% of present beta

If 1200000 is 108.30%, the total portfolio should be

\[1200000 \times 100/108.30 \text{ or } 1108030 \text{ say } 1108030 \]

Additional investment should be (-) 91967 i.e. Divest ₹ 91970 of Risk Free Asset

Revised Portfolio will be

<table>
<thead>
<tr>
<th>Security</th>
<th>No. of shares (1)</th>
<th>Market Price of Per Share (2)</th>
<th>((1) \times (2))</th>
<th>% to total (w)</th>
<th>(\beta (x))</th>
<th>wx</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSL</td>
<td>10000</td>
<td>50</td>
<td>500000</td>
<td>0.4513</td>
<td>0.9</td>
<td>0.406</td>
</tr>
<tr>
<td>CSL</td>
<td>5000</td>
<td>20</td>
<td>100000</td>
<td>0.0903</td>
<td>1</td>
<td>0.090</td>
</tr>
<tr>
<td>SML</td>
<td>8000</td>
<td>25</td>
<td>200000</td>
<td>0.1805</td>
<td>1.5</td>
<td>0.271</td>
</tr>
<tr>
<td>APL</td>
<td>2000</td>
<td>200</td>
<td>400000</td>
<td>0.3610</td>
<td>1.2</td>
<td>0.433</td>
</tr>
<tr>
<td>Risk free asset</td>
<td>-9197</td>
<td>10</td>
<td>-91970</td>
<td>-0.0830</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1108030</td>
<td></td>
<td></td>
<td>1.2</td>
</tr>
</tbody>
</table>

Portfolio beta 1.20
A has portfolio having following features:

<table>
<thead>
<tr>
<th>Security</th>
<th>β</th>
<th>Random Error σ_i</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>1.60</td>
<td>7</td>
<td>0.25</td>
</tr>
<tr>
<td>M</td>
<td>1.15</td>
<td>11</td>
<td>0.30</td>
</tr>
<tr>
<td>N</td>
<td>1.40</td>
<td>3</td>
<td>0.25</td>
</tr>
<tr>
<td>K</td>
<td>1.00</td>
<td>9</td>
<td>0.20</td>
</tr>
</tbody>
</table>

You are required to find out the risk of the portfolio if the standard deviation of the market index (σ_m) is 18%.

Answer

\[\beta_p = \sum_{i=1}^{4} w_i \beta_i \]

\[= 1.60 \times 0.25 + 1.15 \times 0.30 + 1.40 \times 0.25 + 1.00 \times 0.20 \]

\[= 0.4 + 0.345 + 0.35 + 0.20 = 1.295 \]

The Standard Deviation (Risk) of the portfolio is

\[= \sqrt{[(1.295)^2(18)^2+(0.25)^2(7)^2+(0.30)^2(11)^2+(0.25)^2(3)^2+(0.20)^2(9)^2)]} \]

\[= \sqrt{[543.36 + 3.0625 + 10.89 + 0.5625 + 3.24]} = \sqrt{561.115} = 23.69\% \]

Alternative Answer

The variance of Security’s Return

\[\sigma^2 = \beta_i^2 \sigma_m^2 + \sigma_{i}^2 \]

Accordingly, variance of various securities

<table>
<thead>
<tr>
<th>Security</th>
<th>(\sigma^2)</th>
<th>Weight(w)</th>
<th>(\sigma^2Xw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>(1.60)^2(18)^2+7^2 = 878.44</td>
<td>0.25</td>
<td>219.61</td>
</tr>
<tr>
<td>M</td>
<td>(1.15)^2(18)^2+11^2 = 549.49</td>
<td>0.30</td>
<td>164.85</td>
</tr>
<tr>
<td>N</td>
<td>(1.40)^2(18)^2+3^2 = 644.04</td>
<td>0.25</td>
<td>161.01</td>
</tr>
<tr>
<td>K</td>
<td>(1.00)^2(18)^2+9^2 = 405.00</td>
<td>0.20</td>
<td>81</td>
</tr>
</tbody>
</table>

Variance

\[\text{SD} = \sqrt{626.47} = 25.03 \]

© The Institute of Chartered Accountants of India
Question 48

Mr. Tamarind intends to invest in equity shares of a company the value of which depends upon various parameters as mentioned below:

<table>
<thead>
<tr>
<th>Factor</th>
<th>Beta</th>
<th>Expected value in %</th>
<th>Actual value in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNP</td>
<td>1.20</td>
<td>7.70</td>
<td>7.70</td>
</tr>
<tr>
<td>Inflation</td>
<td>1.75</td>
<td>5.50</td>
<td>7.00</td>
</tr>
<tr>
<td>Interest rate</td>
<td>1.30</td>
<td>7.75</td>
<td>9.00</td>
</tr>
<tr>
<td>Stock market index</td>
<td>1.70</td>
<td>10.00</td>
<td>12.00</td>
</tr>
<tr>
<td>Industrial production</td>
<td>1.00</td>
<td>7.00</td>
<td>7.50</td>
</tr>
</tbody>
</table>

If the risk free rate of interest be 9.25%, how much is the return of the share under Arbitrage Pricing Theory?

Answer

Return of the stock under APT

<table>
<thead>
<tr>
<th>Factor</th>
<th>Actual value in %</th>
<th>Expected value in %</th>
<th>Difference</th>
<th>Beta</th>
<th>Diff. x Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNP</td>
<td>7.70</td>
<td>7.70</td>
<td>0.00</td>
<td>1.20</td>
<td>0.00</td>
</tr>
<tr>
<td>Inflation</td>
<td>7.00</td>
<td>5.50</td>
<td>1.50</td>
<td>1.75</td>
<td>2.63</td>
</tr>
<tr>
<td>Interest rate</td>
<td>9.00</td>
<td>7.75</td>
<td>1.25</td>
<td>1.30</td>
<td>1.63</td>
</tr>
<tr>
<td>Stock index</td>
<td>12.00</td>
<td>10.00</td>
<td>2.00</td>
<td>1.70</td>
<td>3.40</td>
</tr>
<tr>
<td>Ind. Production</td>
<td>7.50</td>
<td>7.00</td>
<td>0.50</td>
<td>1.00</td>
<td>0.50</td>
</tr>
<tr>
<td>Risk free rate in %</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.16</td>
</tr>
<tr>
<td>Return under APT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.41</td>
</tr>
</tbody>
</table>

Question 49

The total market value of the equity share of O.R.E. Company is ₹ 60,00,000 and the total value of the debt is ₹ 40,00,000. The treasurer estimate that the beta of the stock is currently 1.5 and that the expected risk premium on the market is 10 per cent. The treasury bill rate is 8 per cent.

Required:

1. What is the beta of the Company’s existing portfolio of assets?
2. Estimate the Company’s Cost of capital and the discount rate for an expansion of the company’s present business.
Answer

(1) \[\beta_{\text{company}} = \beta_{\text{equity}} \times \frac{V_E}{V_0} + B_{\text{debt}} \times \frac{V_D}{V_0} \]

Note: Since \(\beta_{\text{debt}} \) is not given it is assumed that company debt capital is virtually riskless.

If company’s debt capital is riskless than above relationship become:

Here \(\beta_{\text{equity}} = 1.5;\ \beta_{\text{company}} = \beta_{\text{equity}} \times \frac{V_E}{V_0} \)

As \(\beta_{\text{debt}} = 0 \)

\(V_E = ₹ 60 \) lakhs.

\(V_D = ₹ 40 \) lakhs.

\(V_0 = ₹ 100 \) lakhs.

\[\beta_{\text{company}} = 1.5 \times \frac{₹ 60 \text{ lakhs}}{₹ 100 \text{ lakhs}} \]

\[= 0.9 \]

(2) Company’s cost of equity = \(R_f + \beta_A \times \text{Risk premium} \)

Where \(R_f = \text{Risk free rate of return} \)

\(\beta_A = \text{Beta of company assets} \)

Therefore, company’s cost of equity = \(8\% + 0.9 \times 10 = 17\% \) and overall cost of capital shall be

\[= 17\% \times \frac{60,00,000 + 8\% \times 40,00,000}{100,00,000 + 40,00,000} \]

\[= 10.20\% + 3.20\% = 13.40\% \]

Alternatively it can also be computed as follows:

Cost of Equity = \(8\% + 1.5 \times 10 = 23\% \)

Cost of Debt = \(8\% \)

\[\text{WACC (Cost of Capital)} = \frac{23\% \times \frac{60,00,000}{1,00,00,000} + 8\% \times \frac{40,00,000}{1,00,00,000}}{1,00,00,000} = 17\% \]

In case of expansion of the company’s present business, the same rate of return i.e. 13.40% will be used. However, in case of diversification into new business the risk profile of new business is likely to be different. Therefore, different discount factor has to be worked out for such business.
Question 50

Mr. Nirmal Kumar has categorized all the available stock in the market into the following types:

(i) Small cap growth stocks
(ii) Small cap value stocks
(iii) Large cap growth stocks
(iv) Large cap value stocks

Mr. Nirmal Kumar also estimated the weights of the above categories of stocks in the market index. Further, more the sensitivity of returns on these categories of stocks to the three important factor are estimated to be:

<table>
<thead>
<tr>
<th>Category of Stocks</th>
<th>Weight in Market Index</th>
<th>Factor I (Beta)</th>
<th>Factor II (Book Price)</th>
<th>Factor III (Inflation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small cap growth</td>
<td>25%</td>
<td>0.80</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>Small cap value</td>
<td>10%</td>
<td>0.90</td>
<td>0.75</td>
<td>1.25</td>
</tr>
<tr>
<td>Large cap growth</td>
<td>50%</td>
<td>1.165</td>
<td>2.75</td>
<td>8.65</td>
</tr>
<tr>
<td>Large cap value</td>
<td>15%</td>
<td>0.85</td>
<td>2.05</td>
<td>6.75</td>
</tr>
<tr>
<td>Risk Premium</td>
<td>6.85%</td>
<td>-3.5%</td>
<td>-3.5%</td>
<td>0.65%</td>
</tr>
</tbody>
</table>

The rate of return on treasury bonds is 4.5%

Required:

(a) Using Arbitrage Pricing Theory, determine the expected return on the market index.

(b) Using Capital Asset Pricing Model (CAPM), determine the expected return on the market index.

(c) Mr. Nirmal Kumar wants to construct a portfolio constituting only the ‘small cap value’ and ‘large cap growth’ stocks. If the target beta for the desired portfolio is 1, determine the composition of his portfolio.

Answer

(a) Method I

Portfolio’s return

Small cap growth = 4.5 + 0.80 x 6.85 + 1.39 x (-3.5) + 1.35 x 0.65 = 5.9925%

Small cap value = 4.5 + 0.90 x 6.85 + 0.75 x (-3.5) + 1.25 x 0.65 = 8.8525%

Large cap growth = 4.5 + 1.165 x 6.85 + 2.75 x (-3.5) + 8.65 x 0.65 = 8.478%

Large cap value = 4.5 + 0.85 x 6.85 + 2.05 x (-3.5) + 6.75 x 0.65 = 7.535%

Expected return on market index
Method II

Expected return on the market index
\[
= 4.5\% + [0.1 \times 0.9 + 0.25 \times 0.8 + 0.15 \times 0.85 + 0.50 \times 1.165] \times 6.85 + [(0.75 \times 0.10 + 1.39 \\
\times 0.25 + 2.05 \times 0.15 + 2.75 \times 0.50)] \times (-3.5) + [(1.25 \times 0.10 + 1.35 \times 0.25 + 6.75 \times \\
0.15 + 8.65 \times 0.50)] \times 0.65
\]
\[
= 4.5 + 6.85 + (-7.3675) + 3.77 = 7.7525\%.
\]

(b) Using CAPM,

<table>
<thead>
<tr>
<th>Fund</th>
<th>Return</th>
<th>Standard Deviation</th>
<th>Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15</td>
<td>7</td>
<td>1.25</td>
</tr>
<tr>
<td>B</td>
<td>18</td>
<td>10</td>
<td>0.75</td>
</tr>
<tr>
<td>C</td>
<td>14</td>
<td>5</td>
<td>1.40</td>
</tr>
</tbody>
</table>

(c) Let us assume that Mr. Nirmal will invest \(X_1\)% in small cap value stock and \(X_2\)% in large cap growth stock
\[
X_1 + X_2 = 1
\]
\[
0.90 X_1 + 1.165 X_2 = 1
\]
\[
0.90 X_1 + 1.165(1 - X_1) = 1
\]
\[
0.90 X_1 + 1.165 - 1.165 X_1 = 1
\]
\[
0.165 = 0.265 X_1
\]
\[
\frac{0.165}{0.265} = X_1
\]
\[
X_1 = 0.623 = X_1, X_2 = 0.377
\]
62.3% in small cap value
37.7% in large cap growth.

Question 51

The following are the data on five mutual funds:

© The Institute of Chartered Accountants of India
You are required to compute Reward to Volatility Ratio and rank these portfolio using:

♦ Sharpe method and
♦ Treynor's method

assuming the risk free rate is 6%.

Answer

Sharpe Ratio \[S = \frac{(R_p - R_f)}{\sigma_p} \]
Treynor Ratio \[T = \frac{(R_p - R_f)}{\beta_p} \]

Where,

\[R_p \] = Return on Fund
\[R_f \] = Risk-free rate
\[\sigma_p \] = Standard deviation of Fund
\[\beta_p \] = Beta of Fund

Reward to Variability (Sharpe Ratio)

<table>
<thead>
<tr>
<th>Mutual Fund</th>
<th>(R_p)</th>
<th>(R_f)</th>
<th>(R_p - R_f)</th>
<th>(\sigma_p)</th>
<th>Reward to Variability</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>1.285</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>18</td>
<td>6</td>
<td>12</td>
<td>10</td>
<td>1.20</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>14</td>
<td>6</td>
<td>8</td>
<td>5</td>
<td>1.60</td>
<td>1</td>
</tr>
<tr>
<td>D</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>1.00</td>
<td>5</td>
</tr>
<tr>
<td>E</td>
<td>16</td>
<td>6</td>
<td>10</td>
<td>9</td>
<td>1.11</td>
<td>4</td>
</tr>
</tbody>
</table>

Reward to Volatility (Treynor Ratio)

<table>
<thead>
<tr>
<th>Mutual Fund</th>
<th>(R_p)</th>
<th>(R_f)</th>
<th>(R_p - R_f)</th>
<th>(\beta_p)</th>
<th>Reward to Volatility</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15</td>
<td>6</td>
<td>9</td>
<td>1.25</td>
<td>7.2</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>18</td>
<td>6</td>
<td>12</td>
<td>0.75</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>14</td>
<td>6</td>
<td>8</td>
<td>1.40</td>
<td>5.71</td>
<td>5</td>
</tr>
<tr>
<td>D</td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>0.98</td>
<td>6.12</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>16</td>
<td>6</td>
<td>10</td>
<td>1.50</td>
<td>6.67</td>
<td>3</td>
</tr>
</tbody>
</table>